TY - CHAP
T1 - Discount targeting in online social networks using backpressure-based learning
AU - Shakkottai, Srinivas
AU - Ying, Lei
N1 - Funding Information:
Research was funded in part by National Stroke FoundationNSF grant CNS-0904520 and Qatar Telecom, Doha, Qatar.
Publisher Copyright:
© Springer Science+Business Media, LLC 2012.
PY - 2012
Y1 - 2012
N2 - Online social networks are increasingly being seen as a means of obtaining awareness of user preferences. Such awareness could be used to target goods and services at them. We consider a general user model, wherein users could buy different numbers of goods at a marked and at a discounted price. Our first objective is to learn which users would be interested in a particular good. Second, we would like to knowhow much to discount these users such that the entire demand is realized, but not so much that profits are decreased. We develop algorithms for multihop forwarding of discount coupons over an online social network, in which users forward such coupons to each other in return for a reward. Coupling this idea with the implicit learning associated with backpressure routing (originally developed for multihopwireless networks),we showhowto realize optimal revenue. Using simulations, we illustrate its superior performance as compared to random coupon forwarding on different social network topologies. We then propose a simpler heuristic algorithm and using simulations, and show that its performance approaches that of backpressure routing.
AB - Online social networks are increasingly being seen as a means of obtaining awareness of user preferences. Such awareness could be used to target goods and services at them. We consider a general user model, wherein users could buy different numbers of goods at a marked and at a discounted price. Our first objective is to learn which users would be interested in a particular good. Second, we would like to knowhow much to discount these users such that the entire demand is realized, but not so much that profits are decreased. We develop algorithms for multihop forwarding of discount coupons over an online social network, in which users forward such coupons to each other in return for a reward. Coupling this idea with the implicit learning associated with backpressure routing (originally developed for multihopwireless networks),we showhowto realize optimal revenue. Using simulations, we illustrate its superior performance as compared to random coupon forwarding on different social network topologies. We then propose a simpler heuristic algorithm and using simulations, and show that its performance approaches that of backpressure routing.
UR - http://www.scopus.com/inward/record.url?scp=84978873075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978873075&partnerID=8YFLogxK
U2 - 10.1007/978-1-4614-0857-4_14
DO - 10.1007/978-1-4614-0857-4_14
M3 - Chapter
AN - SCOPUS:84978873075
T3 - Springer Optimization and Its Applications
SP - 427
EP - 455
BT - Springer Optimization and Its Applications
PB - Springer International Publishing
ER -