Direct prediction of the effects of mistuning on the forced response of bladed disks

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

In this paper, a novel approach to determine reliable estimates of the moments of the steady-state resonant response of a randomly mistuned bladed disk is presented, and the use of these moments to accurately predict the corresponding distribution of the amplitude of blade vibration is described. The estimation of the moments of the response is accomplished first by relying on a "joint cumulant closure" strategy that expresses higher order moments in terms of lower order ones. A simple modeling of the error terms of these approximations is also suggested that allows the determination of an improved, or accelerated, estimate of the required moments. The evaluation of the distribution of the amplitude of blade response is then accomplished by matching the moments computed by the cumulant closure with those derived from a three-parameter model recently derived. A first order approximation of the moments obtained for a simple structural model of a bladed disk yields a new parameter that can be used as a measure of the localization of the forced response. Then, numerical results demonstrate that the method provides extremely accurate estimates of the moments for all levels of structural coupling which in turn lead to a description of the amplitude of blade response that closely matches simulation results. Finally, a comparison with existing perturbation techniques clearly shows the increased accuracy obtained with the proposed joint cumulant closure formulation.

Original languageEnglish (US)
Pages (from-to)626-634
Number of pages9
JournalJournal of Engineering for Gas Turbines and Power
Volume120
Issue number3
StatePublished - Jul 1998

Fingerprint

Perturbation techniques

ASJC Scopus subject areas

  • Mechanical Engineering

Cite this

Direct prediction of the effects of mistuning on the forced response of bladed disks. / Mignolet, Marc; Hu, W.

In: Journal of Engineering for Gas Turbines and Power, Vol. 120, No. 3, 07.1998, p. 626-634.

Research output: Contribution to journalArticle

@article{b61f552848894121931ce50fc911b840,
title = "Direct prediction of the effects of mistuning on the forced response of bladed disks",
abstract = "In this paper, a novel approach to determine reliable estimates of the moments of the steady-state resonant response of a randomly mistuned bladed disk is presented, and the use of these moments to accurately predict the corresponding distribution of the amplitude of blade vibration is described. The estimation of the moments of the response is accomplished first by relying on a {"}joint cumulant closure{"} strategy that expresses higher order moments in terms of lower order ones. A simple modeling of the error terms of these approximations is also suggested that allows the determination of an improved, or accelerated, estimate of the required moments. The evaluation of the distribution of the amplitude of blade response is then accomplished by matching the moments computed by the cumulant closure with those derived from a three-parameter model recently derived. A first order approximation of the moments obtained for a simple structural model of a bladed disk yields a new parameter that can be used as a measure of the localization of the forced response. Then, numerical results demonstrate that the method provides extremely accurate estimates of the moments for all levels of structural coupling which in turn lead to a description of the amplitude of blade response that closely matches simulation results. Finally, a comparison with existing perturbation techniques clearly shows the increased accuracy obtained with the proposed joint cumulant closure formulation.",
author = "Marc Mignolet and W. Hu",
year = "1998",
month = "7",
language = "English (US)",
volume = "120",
pages = "626--634",
journal = "Journal of Engineering for Gas Turbines and Power",
issn = "0742-4795",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "3",

}

TY - JOUR

T1 - Direct prediction of the effects of mistuning on the forced response of bladed disks

AU - Mignolet, Marc

AU - Hu, W.

PY - 1998/7

Y1 - 1998/7

N2 - In this paper, a novel approach to determine reliable estimates of the moments of the steady-state resonant response of a randomly mistuned bladed disk is presented, and the use of these moments to accurately predict the corresponding distribution of the amplitude of blade vibration is described. The estimation of the moments of the response is accomplished first by relying on a "joint cumulant closure" strategy that expresses higher order moments in terms of lower order ones. A simple modeling of the error terms of these approximations is also suggested that allows the determination of an improved, or accelerated, estimate of the required moments. The evaluation of the distribution of the amplitude of blade response is then accomplished by matching the moments computed by the cumulant closure with those derived from a three-parameter model recently derived. A first order approximation of the moments obtained for a simple structural model of a bladed disk yields a new parameter that can be used as a measure of the localization of the forced response. Then, numerical results demonstrate that the method provides extremely accurate estimates of the moments for all levels of structural coupling which in turn lead to a description of the amplitude of blade response that closely matches simulation results. Finally, a comparison with existing perturbation techniques clearly shows the increased accuracy obtained with the proposed joint cumulant closure formulation.

AB - In this paper, a novel approach to determine reliable estimates of the moments of the steady-state resonant response of a randomly mistuned bladed disk is presented, and the use of these moments to accurately predict the corresponding distribution of the amplitude of blade vibration is described. The estimation of the moments of the response is accomplished first by relying on a "joint cumulant closure" strategy that expresses higher order moments in terms of lower order ones. A simple modeling of the error terms of these approximations is also suggested that allows the determination of an improved, or accelerated, estimate of the required moments. The evaluation of the distribution of the amplitude of blade response is then accomplished by matching the moments computed by the cumulant closure with those derived from a three-parameter model recently derived. A first order approximation of the moments obtained for a simple structural model of a bladed disk yields a new parameter that can be used as a measure of the localization of the forced response. Then, numerical results demonstrate that the method provides extremely accurate estimates of the moments for all levels of structural coupling which in turn lead to a description of the amplitude of blade response that closely matches simulation results. Finally, a comparison with existing perturbation techniques clearly shows the increased accuracy obtained with the proposed joint cumulant closure formulation.

UR - http://www.scopus.com/inward/record.url?scp=0000326108&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000326108&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000326108

VL - 120

SP - 626

EP - 634

JO - Journal of Engineering for Gas Turbines and Power

JF - Journal of Engineering for Gas Turbines and Power

SN - 0742-4795

IS - 3

ER -