Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria

Michael E. Bizeau, Wayne T. Willis, Jeffrey R. Hazel

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

To examine the effect of endurance training (6 wk of treadmill running) on regional mitochondrial adaptations within skeletal muscle, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria were isolated from trained and control rat hindlimb muscles. Mitochondrial oxygen consumption (V̇O2) was measured polarographically by using the following substrates: 1 mM pyruvate + 1 mM malate (P+M), 10 mM 2-oxoglutarate, 45 μM palmitoyl-DL-carnitine + 1 mM malate, and 10 mM glutamate. Spectrophotometric assays of cytochrome-c reductase and NAD-specific isocitrate dehydrogenase (IDH) activity were also performed. Maximal (state III) and resting (state IV) V̇O2 were lower in SS than in IMF mitochondria in both trained and control groups. In SS mitochondria, training elicited significant 36 and 20% increases in state III V̇O2 with P+M and glutamate, respectively. In IMF mitochondria, training resulted in a smaller (20%), yet significant, increase in state III V̇O2 with P+M as a substrate, whereas state III V̇O2 increased 33 and 27% with 2-oxoglutarate and palmitoyl-DL-carnitine + malate, respectively. Within groups, cytochrome-c reductase and IDH activities were lower in SS when compared with IMF mitochondria. Training increased succinate-cytochrome-c reductase in both SS (30%) and IMF mitochondria (28%). IDH activity increased 32% in the trained IMF but remained unchanged in SS mitochondria. We conclude that endurance training promotes substantial changes in protein stoichiometry and composition of both SS and IMF mitochondria.

Original languageEnglish (US)
Pages (from-to)1279-1284
Number of pages6
JournalJournal of Applied Physiology
Volume85
Issue number4
Publication statusPublished - Oct 1998

    Fingerprint

Keywords

  • Exercise
  • Mitochondrial respiration
  • Substrate oxidation

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this