TY - JOUR
T1 - Differential processing of high-molecular-weight kininogen during normal pregnancy
AU - Droll, Stephenie H.
AU - Hsu, Yen Michael Sheng
AU - Drake, Steven K.
AU - Kim, Ashley
AU - Wang, Weixin
AU - Calvo, Katherine R.
AU - Cao, Zheng
AU - Hu, Tony Y.
AU - Zhao, Zhen
N1 - Funding Information:
The authors would like to thank Dr Ann Gronowski from Washington University in St Louis for helping obtain the specimens, Drs Zhe Cheng and Guoan Zhang from Proteomics and Metabolomics Core Facility at Weill Cornell Medicine for LC/MS/MS analysis and Dr Christopher J. Lyon from Arizona State University for carefully editing the manuscript. KRC, SD, SKD, WW, and ZZ were supported by the Intermural Research Program at the National Institutes of Health Clinical Center.
Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Rationale: Studies identified kininogen as a potential biomarker of preeclampsia, a major cause of adverse maternal outcomes. High-molecular-weight kininogen (HK) and its activated form participate in numerous pathways associated with establishing and maintaining pregnancy. However, dynamic changes in HK and naturally occurring HK-derived peptides during the natural course of pregnancy are largely unknown. Methods: Longitudinal serum samples during the course of normal pregnancy (trimesters T1, T2, T3) from 60 pregnant women were analyzed by western blot with an anti-HK antibody. Circulating peptides in longitudinal serum specimens derived from 50 participants were enriched using nanoporous silica thin films. Peptides were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and database searching. Relative quantification was performed using MaxQuant and in-house scripts. Normality was evaluated by either ANOVA or Friedman tests with p < 0.05 for statistical significance. Results: Western blotting revealed that HK significantly decreased during normal pregnancy (T1 vs T2, p < 0.05; T1 vs T3, p < 0.0001). A 100 kDa intermediate increased during pregnancy (T1 vs T2, p < 0.005; T1 vs T3, p < 0.01). Moreover, the heavy chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.01) and light chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.05) significantly increased during pregnancy. LC/MS/MS analysis identified 180 kininogen-1 peptides, of which 167 mapped to domain 5 (D5). Seventy-three peptides with ten or more complete data sets were included for further analysis. Seventy peptides mapped to D5, and 3, 24, and 43 peptides showed significant decrease, no trend, and significant increase, respectively, during pregnancy. Conclusions: This study demonstrates dynamic changes in HK and naturally occurring HK-derived peptides during pregnancy. Our study sheds light on the gestational changes of HK and its peptides for further validation of them as potential biomarkers for pregnancy-related complications.
AB - Rationale: Studies identified kininogen as a potential biomarker of preeclampsia, a major cause of adverse maternal outcomes. High-molecular-weight kininogen (HK) and its activated form participate in numerous pathways associated with establishing and maintaining pregnancy. However, dynamic changes in HK and naturally occurring HK-derived peptides during the natural course of pregnancy are largely unknown. Methods: Longitudinal serum samples during the course of normal pregnancy (trimesters T1, T2, T3) from 60 pregnant women were analyzed by western blot with an anti-HK antibody. Circulating peptides in longitudinal serum specimens derived from 50 participants were enriched using nanoporous silica thin films. Peptides were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and database searching. Relative quantification was performed using MaxQuant and in-house scripts. Normality was evaluated by either ANOVA or Friedman tests with p < 0.05 for statistical significance. Results: Western blotting revealed that HK significantly decreased during normal pregnancy (T1 vs T2, p < 0.05; T1 vs T3, p < 0.0001). A 100 kDa intermediate increased during pregnancy (T1 vs T2, p < 0.005; T1 vs T3, p < 0.01). Moreover, the heavy chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.01) and light chain (T1 vs T2, p < 0.0001; T1 vs T3, p < 0.0001; T2 vs T3, p < 0.05) significantly increased during pregnancy. LC/MS/MS analysis identified 180 kininogen-1 peptides, of which 167 mapped to domain 5 (D5). Seventy-three peptides with ten or more complete data sets were included for further analysis. Seventy peptides mapped to D5, and 3, 24, and 43 peptides showed significant decrease, no trend, and significant increase, respectively, during pregnancy. Conclusions: This study demonstrates dynamic changes in HK and naturally occurring HK-derived peptides during pregnancy. Our study sheds light on the gestational changes of HK and its peptides for further validation of them as potential biomarkers for pregnancy-related complications.
UR - http://www.scopus.com/inward/record.url?scp=85079466451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079466451&partnerID=8YFLogxK
U2 - 10.1002/rcm.8552
DO - 10.1002/rcm.8552
M3 - Article
C2 - 31412146
AN - SCOPUS:85079466451
SN - 0951-4198
VL - 34
JO - Rapid Communications in Mass Spectrometry
JF - Rapid Communications in Mass Spectrometry
IS - S1
M1 - e8552
ER -