Device and materials requirements for neuromorphic computing

Raisul Islam, Haitong Li, Pai Yu Chen, Weier Wan, Hong Yu Chen, Bin Gao, Huaqiang Wu, Shimeng Yu, Krishna Saraswat, H. S. Philip Wong

Research output: Contribution to journalReview article

9 Scopus citations

Abstract

Energy efficient hardware implementation of artificial neural network is challenging due the 'memory-wall' bottleneck. Neuromorphic computing promises to address this challenge by eliminating data movement to and from off-chip memory devices. Emerging non-volatile memory (NVM) devices that exhibit gradual changes in resistivity are a key enabler of in-memory computing - a type of neuromorphic computing. In this paper, we present a review of some of the NVM devices (RRAM, CBRAM, PCM) commonly used in neuromorphic application. The review focuses on the trade-off between device parameters such as retention, endurance, device-to-device variation, speed and resistance levels, and the interplay with target applications. This work aims at providing guidance for finding the optimized resistive memory devices material stack suitable for neuromorphic application.

Original languageEnglish (US)
Article number113001
JournalJournal of Physics D: Applied Physics
Volume52
Issue number11
DOIs
Publication statusPublished - Jan 18 2019

    Fingerprint

Keywords

  • deep neural network
  • neuromorphic computing
  • non volatile memory

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Cite this

Islam, R., Li, H., Chen, P. Y., Wan, W., Chen, H. Y., Gao, B., ... Philip Wong, H. S. (2019). Device and materials requirements for neuromorphic computing. Journal of Physics D: Applied Physics, 52(11), [113001]. https://doi.org/10.1088/1361-6463/aaf784