Abstract
Investigators use bioreactors to grow tissues on three-dimensional scaffolds because bioreactors provide dynamic conditions that are more suitable for cell growth and proliferation than static culture. Recently, bioreactors have been developed that more closely resemble human physiological conditions. It is thought that the cells in culture will respond positively to conditions that mimic the natural tissue environment producing replacement tissues that are structurally and functionally similar to the original tissues. This report describes a pulsatile flow, two-valve bioreactor system which mimics the left half of the human heart to condition and test tissue engineered heart valves before pre-clinical and clinical trials. Test results will be based on data from flow meters and pressure sensors. The system makes use of a removable valve chamber that will allow investigators to use the bulk of the system for valves of different sizes. The system fits into standard CO 2 incubators so that monitoring and maintaining optimum tissue culture conditions is unnecessary. The system is modular so that the media will remain sterile while still allowing individual components, such as the valve chamber, to be removed and opened in a tissue culture hood without exposing the whole system to contaminants.
Original language | English (US) |
---|---|
Title of host publication | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Pages | 835-836 |
Number of pages | 2 |
Volume | 1 |
State | Published - 2002 |
Event | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) - Houston, TX, United States Duration: Oct 23 2002 → Oct 26 2002 |
Other
Other | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) |
---|---|
Country | United States |
City | Houston, TX |
Period | 10/23/02 → 10/26/02 |
Fingerprint
Keywords
- Biomimetic left-heart
- Bioreactor
- Pulsatile flow
- Tissue engineered heart valve
ASJC Scopus subject areas
- Bioengineering
Cite this
Development of a pulsatile-flow tissue engineered heart valve bioreactor system to mimic the physiological function of the human left heart. / Miller, D. J.; Burdick, J. M.; Kennedy, C. E.; Massia, Stephen.
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. Vol. 1 2002. p. 835-836.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
}
TY - GEN
T1 - Development of a pulsatile-flow tissue engineered heart valve bioreactor system to mimic the physiological function of the human left heart
AU - Miller, D. J.
AU - Burdick, J. M.
AU - Kennedy, C. E.
AU - Massia, Stephen
PY - 2002
Y1 - 2002
N2 - Investigators use bioreactors to grow tissues on three-dimensional scaffolds because bioreactors provide dynamic conditions that are more suitable for cell growth and proliferation than static culture. Recently, bioreactors have been developed that more closely resemble human physiological conditions. It is thought that the cells in culture will respond positively to conditions that mimic the natural tissue environment producing replacement tissues that are structurally and functionally similar to the original tissues. This report describes a pulsatile flow, two-valve bioreactor system which mimics the left half of the human heart to condition and test tissue engineered heart valves before pre-clinical and clinical trials. Test results will be based on data from flow meters and pressure sensors. The system makes use of a removable valve chamber that will allow investigators to use the bulk of the system for valves of different sizes. The system fits into standard CO 2 incubators so that monitoring and maintaining optimum tissue culture conditions is unnecessary. The system is modular so that the media will remain sterile while still allowing individual components, such as the valve chamber, to be removed and opened in a tissue culture hood without exposing the whole system to contaminants.
AB - Investigators use bioreactors to grow tissues on three-dimensional scaffolds because bioreactors provide dynamic conditions that are more suitable for cell growth and proliferation than static culture. Recently, bioreactors have been developed that more closely resemble human physiological conditions. It is thought that the cells in culture will respond positively to conditions that mimic the natural tissue environment producing replacement tissues that are structurally and functionally similar to the original tissues. This report describes a pulsatile flow, two-valve bioreactor system which mimics the left half of the human heart to condition and test tissue engineered heart valves before pre-clinical and clinical trials. Test results will be based on data from flow meters and pressure sensors. The system makes use of a removable valve chamber that will allow investigators to use the bulk of the system for valves of different sizes. The system fits into standard CO 2 incubators so that monitoring and maintaining optimum tissue culture conditions is unnecessary. The system is modular so that the media will remain sterile while still allowing individual components, such as the valve chamber, to be removed and opened in a tissue culture hood without exposing the whole system to contaminants.
KW - Biomimetic left-heart
KW - Bioreactor
KW - Pulsatile flow
KW - Tissue engineered heart valve
UR - http://www.scopus.com/inward/record.url?scp=0036916178&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036916178&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0036916178
VL - 1
SP - 835
EP - 836
BT - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
ER -