Determination of control parameters for a radio-frequency based crane controller

Diana Cardona Ujueta, Kelvin Chen Chih Peng, William Singhose, David Frakes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Human operators have difficulty driving cranes quickly, accurately, and safely because of the sluggish response of the massive structure and large payload swings. Manipulation difficulty is also increased by non-intuitive crane-control interfaces that consist of buttons and levers. A new type of crane-control interface allows operators to drive a crane by simply moving a small radio frequency emitter through the desired path. Real-time-location sensors track the movements of the radio tag. The tag position is used in a proportional feedback control scheme to drive the crane trolley toward the tag. Unfortunately, the crane payload usually responds with large-amplitude swings. Feedback control of the payload swing is not implemented, due to the difficulty of measuring the payload state. Instead, an input-shaping control element is used to limit swing. Simulations of the crane dynamics are used to select a good combination of feedback gains and input-shaper parameters. Experiments performed on an industrial bridge crane verify the effectiveness of the proposed control approach.

Original languageEnglish (US)
Title of host publication2010 49th IEEE Conference on Decision and Control, CDC 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3602-3607
Number of pages6
ISBN (Print)9781424477456
DOIs
StatePublished - 2010
Event49th IEEE Conference on Decision and Control, CDC 2010 - Atlanta, United States
Duration: Dec 15 2010Dec 17 2010

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference49th IEEE Conference on Decision and Control, CDC 2010
Country/TerritoryUnited States
CityAtlanta
Period12/15/1012/17/10

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Determination of control parameters for a radio-frequency based crane controller'. Together they form a unique fingerprint.

Cite this