Designing Patchy Interactions to Self-Assemble Arbitrary Structures

Flavio Romano, John Russo, Lukáš Kroc, Petr Šulc

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

One of the fundamental goals of nanotechnology is to exploit selective and directional interactions between molecules to design particles that self-assemble into desired structures, from capsids, to nanoclusters, to fully formed crystals with target properties (e.g., optical, mechanical, etc.). Here, we provide a general framework which transforms the inverse problem of self-assembly of colloidal crystals into a Boolean satisfiability problem for which solutions can be found numerically. Given a reference structure and the desired number of components, our approach produces designs for which the target structure is an energy minimum, and also allows us to exclude solutions that correspond to competing structures. We demonstrate the effectiveness of our approach by designing model particles that spontaneously nucleate milestone structures such as the cubic diamond, the pyrochlore, and the clathrate lattices.

Original languageEnglish (US)
Article number118003
JournalPhysical Review Letters
Volume125
Issue number11
DOIs
StatePublished - Sep 2020

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Designing Patchy Interactions to Self-Assemble Arbitrary Structures'. Together they form a unique fingerprint.

Cite this