Designing Camera Networks by Convex Quadratic Programming

Bernard Ghanem, Yuanhao Cao, Peter Wonka

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport).

Original languageEnglish (US)
Pages (from-to)69-80
Number of pages12
JournalComputer Graphics Forum
Volume34
Issue number2
DOIs
StatePublished - May 1 2015
Externally publishedYes

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Designing Camera Networks by Convex Quadratic Programming'. Together they form a unique fingerprint.

Cite this