Design of 1.2 kV Power Switches With Low RON Using GaN-Based Vertical JFET

Dong Ji, Srabanti Chowdhury

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Two novel gallium nitride-based vertical junction FETs (VJFETs), one with a vertical channel and the other with a lateral channel, are proposed, designed, and modeled to achieve a 1.2 kV normally OFF power switch with very low ON resistance (RON). The 2-D drift diffusion model of the proposed devices was implemented using Silvaco ATLAS. A comprehensive design space was generated for the vertical channel VJFET (VC-VJFET). For a well-designed VC-VJFET, the breakdown voltage (VBR) obtained was 1260 V, which is defined in this study as the drain-to-source voltage at an OFF-state current of 1 μA·cm⁻² and a peak electric field not exceeding 2.4 MV/cm. The corresponding RON was 5.2 mΩ·cm². To further improve the switching device figure of merit, a merged lateral-vertical geometry was proposed and modeled in the form of a lateral channel VJFET (LC-VJFET). For the LC-VJFET, a breakdown voltage of 1310 V with a corresponding RON of 1.7 mΩ·cm² was achieved for similar thicknesses of the drift region. This paper studies the design space in detail and discusses the associated tradeoffs in the RON and VBR in conjunction with the threshold voltage (VT) desired for the normally OFF operation.

Original languageEnglish (US)
Article number7153556
Pages (from-to)2571-2578
Number of pages8
JournalIEEE Transactions on Electron Devices
Volume62
Issue number8
DOIs
StatePublished - Aug 1 2015
Externally publishedYes

Keywords

  • Gallium nitride (GaN)
  • transistor modeling
  • Vertical junction FET (VJFET).

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Design of 1.2 kV Power Switches With Low RON Using GaN-Based Vertical JFET'. Together they form a unique fingerprint.

Cite this