Design, modeling, and optimization of a hopping robot platform

Jacob W. Knaup, Daniel M. Aukes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Laminate devices have the potential to lower the cost and complexity of robots. Taking advantage of laminate materials’ flexibility, a high-performance jumping platform has been developed with the goal of optimizing jump ground clearance. Four simulations are compared in order to understand which dynamic model elements (leg flexibility, motor dynamics, contact, joint damping, etc.) must be included to accurately model jumping performance. The resulting simulations have been validated with experimental data gathered from a small set of physical leg prototypes spanning design considerations such as gear ratio and leg length, and one in particular was selected for the fidelity of performance trends against experimental results. This simulation has subsequently been used to predict the performance of new leg designs outside the initial design set. The design predicted to achieve the highest jump ground clearance was then built and tested as a demonstration of the usefulness of this simulation.

Original languageEnglish (US)
Title of host publication43rd Mechanisms and Robotics Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859230
DOIs
StatePublished - Jan 1 2019
EventASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019 - Anaheim, United States
Duration: Aug 18 2019Aug 21 2019

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5A-2019

Conference

ConferenceASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019
Country/TerritoryUnited States
CityAnaheim
Period8/18/198/21/19

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Design, modeling, and optimization of a hopping robot platform'. Together they form a unique fingerprint.

Cite this