Design, development, and control of a fabric-based soft ankle module to mimic human ankle stiffness

Sunny Amatya, Amir Salimi Lafmejani, Souvik Poddar, Saivimal Sridar, Thomas Sugar, Panagiotis Polygerinos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper investigates the design of a robotic fabric-based, soft ankle module capable of generating 50% of the human ankle stiffness, in plantarflexion and dorsiflexion for walking. Kinematics, dynamics, and anatomy of the human ankle joint are studied to set the functional requirements of the module. The design of the compliant and lightweight soft ankle module uses fabric-based inflatable actuator arrays for actuation. Models for the human ankle stiffness, as well as a data-driven model of soft ankle module is presented. A high-level stiffness controller utilizing the human ankle and soft ankle model with a low-level pressure controller is implemented. We demonstrate the ability to closely follow the ankle stiffness trajectory using soft ankle module.

Original languageEnglish (US)
Title of host publication2019 IEEE 16th International Conference on Rehabilitation Robotics, ICORR 2019
PublisherIEEE Computer Society
Pages886-891
Number of pages6
ISBN (Electronic)9781728127552
DOIs
StatePublished - Jun 2019
Event16th IEEE International Conference on Rehabilitation Robotics, ICORR 2019 - Toronto, Canada
Duration: Jun 24 2019Jun 28 2019

Publication series

NameIEEE International Conference on Rehabilitation Robotics
Volume2019-June
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Conference

Conference16th IEEE International Conference on Rehabilitation Robotics, ICORR 2019
Country/TerritoryCanada
CityToronto
Period6/24/196/28/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design, development, and control of a fabric-based soft ankle module to mimic human ankle stiffness'. Together they form a unique fingerprint.

Cite this