Deriving chemical trends from thermal infrared spectra of weathered basalt: Implications for remotely determining chemical trends on Mars

Elizabeth B. Rampe, Michael D. Kraft, Thomas Sharp

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Variations in chemical composition over a planetary surface can be used to study petrologic and aqueous alteration processes. The desire for such data on Mars has prompted investigators to derive chemistry from models of Thermal Emission Spectrometer data. Although chemistry derived from thermal infrared spectral models is reportedly reliable for unaltered igneous rocks, the martian surface has experienced chemical weathering, which can adversely affect models. Here, we examine weathered basalts from Baynton, Australia, for which chemical weathering trends have been previously characterized, to test how well chemistry and chemical trends can be determined from TIR spectra of weathered rocks. The mineralogy of variably weathered rocks was derived from TIR spectra by linear mixing, and major-element chemistry was calculated from those mineral models. Derived chemistries and trends were compared to those measured by X-ray fluorescence. TIR spectroscopy is sensitive to weathering products in weathering rinds because the products are present in a coating geometry, making it a useful technique for remotely detecting weathered surfaces on planetary surfaces such as Mars. This sensitivity results in significant modeled abundances of weathering products (>80% of all phases) from TIR spectra of weathered Baynton surfaces, despite evidence from microscopy and X-ray diffraction showing that igneous minerals dominate the weathering rind. Measured chemical weathering trends show loss of MgO, CaO, Na2O, and K2O and relative enrichment in Al2O3 and FeOT. The modeled trends are similar to the measured trends, but a closer look at the modeled oxide abundances demonstrates that most oxides (i.e., alkalis, SiO2, and FeOT) are not well modeled, especially for weathered surfaces. The reasons for this are: (1) non-linear mixing and the presence of secondary coatings causes the overestimation of secondary phases in spectral models, and (2) spectral libraries generally lack poorly crystalline and amorphous secondary phases that are common in weathering rinds so that crystalline phases such as phyllosilicates are selected. The martian surface has likely been weathered less pervasively than the Baynton rocks and, therefore, weathering products may be dominated by poorly crystalline and amorphous phases, rather than crystalline phyllosilicates. Adding these phases to spectral libraries could improve bulk chemistry derived from the martian surface; however, if the secondary phases are present in a coating geometry, the derived chemistry will reflect the composition of the coating, and it may be difficult to infer the chemistry of the parent rock.

Original languageEnglish (US)
Pages (from-to)749-762
Number of pages14
JournalIcarus
Volume225
Issue number1
DOIs
StatePublished - Jul 2013

Fingerprint

weathering
basalt
mars
Mars
infrared spectra
trends
chemistry
coating
chemical weathering
rocks
planetary surface
coatings
planetary surfaces
phyllosilicate
rock
products
oxide
minerals
geometry
chemical

Keywords

  • Infrared observations
  • Mars, Surface
  • Mineralogy
  • Regoliths
  • Spectroscopy

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

Deriving chemical trends from thermal infrared spectra of weathered basalt : Implications for remotely determining chemical trends on Mars. / Rampe, Elizabeth B.; Kraft, Michael D.; Sharp, Thomas.

In: Icarus, Vol. 225, No. 1, 07.2013, p. 749-762.

Research output: Contribution to journalArticle

@article{a438def9dffd4d46a59d181c89dcc576,
title = "Deriving chemical trends from thermal infrared spectra of weathered basalt: Implications for remotely determining chemical trends on Mars",
abstract = "Variations in chemical composition over a planetary surface can be used to study petrologic and aqueous alteration processes. The desire for such data on Mars has prompted investigators to derive chemistry from models of Thermal Emission Spectrometer data. Although chemistry derived from thermal infrared spectral models is reportedly reliable for unaltered igneous rocks, the martian surface has experienced chemical weathering, which can adversely affect models. Here, we examine weathered basalts from Baynton, Australia, for which chemical weathering trends have been previously characterized, to test how well chemistry and chemical trends can be determined from TIR spectra of weathered rocks. The mineralogy of variably weathered rocks was derived from TIR spectra by linear mixing, and major-element chemistry was calculated from those mineral models. Derived chemistries and trends were compared to those measured by X-ray fluorescence. TIR spectroscopy is sensitive to weathering products in weathering rinds because the products are present in a coating geometry, making it a useful technique for remotely detecting weathered surfaces on planetary surfaces such as Mars. This sensitivity results in significant modeled abundances of weathering products (>80{\%} of all phases) from TIR spectra of weathered Baynton surfaces, despite evidence from microscopy and X-ray diffraction showing that igneous minerals dominate the weathering rind. Measured chemical weathering trends show loss of MgO, CaO, Na2O, and K2O and relative enrichment in Al2O3 and FeOT. The modeled trends are similar to the measured trends, but a closer look at the modeled oxide abundances demonstrates that most oxides (i.e., alkalis, SiO2, and FeOT) are not well modeled, especially for weathered surfaces. The reasons for this are: (1) non-linear mixing and the presence of secondary coatings causes the overestimation of secondary phases in spectral models, and (2) spectral libraries generally lack poorly crystalline and amorphous secondary phases that are common in weathering rinds so that crystalline phases such as phyllosilicates are selected. The martian surface has likely been weathered less pervasively than the Baynton rocks and, therefore, weathering products may be dominated by poorly crystalline and amorphous phases, rather than crystalline phyllosilicates. Adding these phases to spectral libraries could improve bulk chemistry derived from the martian surface; however, if the secondary phases are present in a coating geometry, the derived chemistry will reflect the composition of the coating, and it may be difficult to infer the chemistry of the parent rock.",
keywords = "Infrared observations, Mars, Surface, Mineralogy, Regoliths, Spectroscopy",
author = "Rampe, {Elizabeth B.} and Kraft, {Michael D.} and Thomas Sharp",
year = "2013",
month = "7",
doi = "10.1016/j.icarus.2013.05.005",
language = "English (US)",
volume = "225",
pages = "749--762",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Deriving chemical trends from thermal infrared spectra of weathered basalt

T2 - Implications for remotely determining chemical trends on Mars

AU - Rampe, Elizabeth B.

AU - Kraft, Michael D.

AU - Sharp, Thomas

PY - 2013/7

Y1 - 2013/7

N2 - Variations in chemical composition over a planetary surface can be used to study petrologic and aqueous alteration processes. The desire for such data on Mars has prompted investigators to derive chemistry from models of Thermal Emission Spectrometer data. Although chemistry derived from thermal infrared spectral models is reportedly reliable for unaltered igneous rocks, the martian surface has experienced chemical weathering, which can adversely affect models. Here, we examine weathered basalts from Baynton, Australia, for which chemical weathering trends have been previously characterized, to test how well chemistry and chemical trends can be determined from TIR spectra of weathered rocks. The mineralogy of variably weathered rocks was derived from TIR spectra by linear mixing, and major-element chemistry was calculated from those mineral models. Derived chemistries and trends were compared to those measured by X-ray fluorescence. TIR spectroscopy is sensitive to weathering products in weathering rinds because the products are present in a coating geometry, making it a useful technique for remotely detecting weathered surfaces on planetary surfaces such as Mars. This sensitivity results in significant modeled abundances of weathering products (>80% of all phases) from TIR spectra of weathered Baynton surfaces, despite evidence from microscopy and X-ray diffraction showing that igneous minerals dominate the weathering rind. Measured chemical weathering trends show loss of MgO, CaO, Na2O, and K2O and relative enrichment in Al2O3 and FeOT. The modeled trends are similar to the measured trends, but a closer look at the modeled oxide abundances demonstrates that most oxides (i.e., alkalis, SiO2, and FeOT) are not well modeled, especially for weathered surfaces. The reasons for this are: (1) non-linear mixing and the presence of secondary coatings causes the overestimation of secondary phases in spectral models, and (2) spectral libraries generally lack poorly crystalline and amorphous secondary phases that are common in weathering rinds so that crystalline phases such as phyllosilicates are selected. The martian surface has likely been weathered less pervasively than the Baynton rocks and, therefore, weathering products may be dominated by poorly crystalline and amorphous phases, rather than crystalline phyllosilicates. Adding these phases to spectral libraries could improve bulk chemistry derived from the martian surface; however, if the secondary phases are present in a coating geometry, the derived chemistry will reflect the composition of the coating, and it may be difficult to infer the chemistry of the parent rock.

AB - Variations in chemical composition over a planetary surface can be used to study petrologic and aqueous alteration processes. The desire for such data on Mars has prompted investigators to derive chemistry from models of Thermal Emission Spectrometer data. Although chemistry derived from thermal infrared spectral models is reportedly reliable for unaltered igneous rocks, the martian surface has experienced chemical weathering, which can adversely affect models. Here, we examine weathered basalts from Baynton, Australia, for which chemical weathering trends have been previously characterized, to test how well chemistry and chemical trends can be determined from TIR spectra of weathered rocks. The mineralogy of variably weathered rocks was derived from TIR spectra by linear mixing, and major-element chemistry was calculated from those mineral models. Derived chemistries and trends were compared to those measured by X-ray fluorescence. TIR spectroscopy is sensitive to weathering products in weathering rinds because the products are present in a coating geometry, making it a useful technique for remotely detecting weathered surfaces on planetary surfaces such as Mars. This sensitivity results in significant modeled abundances of weathering products (>80% of all phases) from TIR spectra of weathered Baynton surfaces, despite evidence from microscopy and X-ray diffraction showing that igneous minerals dominate the weathering rind. Measured chemical weathering trends show loss of MgO, CaO, Na2O, and K2O and relative enrichment in Al2O3 and FeOT. The modeled trends are similar to the measured trends, but a closer look at the modeled oxide abundances demonstrates that most oxides (i.e., alkalis, SiO2, and FeOT) are not well modeled, especially for weathered surfaces. The reasons for this are: (1) non-linear mixing and the presence of secondary coatings causes the overestimation of secondary phases in spectral models, and (2) spectral libraries generally lack poorly crystalline and amorphous secondary phases that are common in weathering rinds so that crystalline phases such as phyllosilicates are selected. The martian surface has likely been weathered less pervasively than the Baynton rocks and, therefore, weathering products may be dominated by poorly crystalline and amorphous phases, rather than crystalline phyllosilicates. Adding these phases to spectral libraries could improve bulk chemistry derived from the martian surface; however, if the secondary phases are present in a coating geometry, the derived chemistry will reflect the composition of the coating, and it may be difficult to infer the chemistry of the parent rock.

KW - Infrared observations

KW - Mars, Surface

KW - Mineralogy

KW - Regoliths

KW - Spectroscopy

UR - http://www.scopus.com/inward/record.url?scp=84879131479&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879131479&partnerID=8YFLogxK

U2 - 10.1016/j.icarus.2013.05.005

DO - 10.1016/j.icarus.2013.05.005

M3 - Article

AN - SCOPUS:84879131479

VL - 225

SP - 749

EP - 762

JO - Icarus

JF - Icarus

SN - 0019-1035

IS - 1

ER -