Decomposition based approach for synthesis of multi-level threshold logic circuits

Tejaswi Gowda, Sarma Vrudhula

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Scaling is currently the most popular technique used to improve performance metrics of CMOS circuits. This cannot go on forever because the properties that are responsible for the functioning of MOSFETs no longer hold in nano dimensions. Recent research into nano devices has shown that nano devices can be an alternative to CMOS when scaling of CMOS becomes infeasible in the near future. This is motivating the need for stable and mature design automation techniques for threshold logic since it is the design abstraction used for most nano-devices. This paper presents a new decomposition theory that is based on the properties of threshold functions. The main contributions of this paper are: (1) A new method of algebraic factorization called the min-max factorization. (2) A decomposition theory that uses this new factorization to identify and characterize threshold functions. (3) A new threshold logic synthesis methodology that uses the decomposition theory. This synthesis methodology produces circuits that are better than the previous state of art (27% better gate count and comparable circuit depth).

Original languageEnglish (US)
Title of host publication2008 Asia and South Pacific Design Automation Conference, ASP-DAC
Pages125-130
Number of pages6
DOIs
StatePublished - Aug 21 2008
Event2008 Asia and South Pacific Design Automation Conference, ASP-DAC - Seoul, Korea, Republic of
Duration: Mar 21 2008Mar 24 2008

Publication series

NameProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Other

Other2008 Asia and South Pacific Design Automation Conference, ASP-DAC
Country/TerritoryKorea, Republic of
CitySeoul
Period3/21/083/24/08

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Decomposition based approach for synthesis of multi-level threshold logic circuits'. Together they form a unique fingerprint.

Cite this