Deciding Hadamard equivalence of Hadamard matrices

Charles Colbourn, Marlene J. Colbourn

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Equivalence of Hadamard matrices can be decided in O(log2n) space, and hence in subexponential time. These resource bounds follow from the existence of small distinguishing sets.

Original languageEnglish (US)
Pages (from-to)374-376
Number of pages3
JournalBIT
Volume21
Issue number3
DOIs
StatePublished - Sep 1981
Externally publishedYes

Fingerprint

Hadamard matrices
Hadamard Matrix
Equivalence
Resources

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics
  • Software
  • Computer Graphics and Computer-Aided Design

Cite this

Deciding Hadamard equivalence of Hadamard matrices. / Colbourn, Charles; Colbourn, Marlene J.

In: BIT, Vol. 21, No. 3, 09.1981, p. 374-376.

Research output: Contribution to journalArticle

Colbourn, Charles ; Colbourn, Marlene J. / Deciding Hadamard equivalence of Hadamard matrices. In: BIT. 1981 ; Vol. 21, No. 3. pp. 374-376.
@article{8b13b4253a8e45e6ab0a591b80fefbd3,
title = "Deciding Hadamard equivalence of Hadamard matrices",
abstract = "Equivalence of Hadamard matrices can be decided in O(log2n) space, and hence in subexponential time. These resource bounds follow from the existence of small distinguishing sets.",
author = "Charles Colbourn and Colbourn, {Marlene J.}",
year = "1981",
month = "9",
doi = "10.1007/BF01941473",
language = "English (US)",
volume = "21",
pages = "374--376",
journal = "BIT Numerical Mathematics",
issn = "0006-3835",
publisher = "Springer Netherlands",
number = "3",

}

TY - JOUR

T1 - Deciding Hadamard equivalence of Hadamard matrices

AU - Colbourn, Charles

AU - Colbourn, Marlene J.

PY - 1981/9

Y1 - 1981/9

N2 - Equivalence of Hadamard matrices can be decided in O(log2n) space, and hence in subexponential time. These resource bounds follow from the existence of small distinguishing sets.

AB - Equivalence of Hadamard matrices can be decided in O(log2n) space, and hence in subexponential time. These resource bounds follow from the existence of small distinguishing sets.

UR - http://www.scopus.com/inward/record.url?scp=34250238516&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34250238516&partnerID=8YFLogxK

U2 - 10.1007/BF01941473

DO - 10.1007/BF01941473

M3 - Article

AN - SCOPUS:34250238516

VL - 21

SP - 374

EP - 376

JO - BIT Numerical Mathematics

JF - BIT Numerical Mathematics

SN - 0006-3835

IS - 3

ER -