Cyclic sextic trinomials x6 + Ax + B

Andrew Bremner, Blair K. Spearman

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

A correspondence is obtained between irreducible cyclic sextic trinomials x6 + Ax + B ∈ ℚ[x] and rational points on a genus two curve. This implies that up to scaling, x6 + 133x + 209 is the only cyclic sextic trinomial of the given type.

Original languageEnglish (US)
Pages (from-to)161-167
Number of pages7
JournalInternational Journal of Number Theory
Volume6
Issue number1
DOIs
StatePublished - Feb 2010

Fingerprint

Rational Points
Genus
Correspondence
Scaling
Imply
Curve

Keywords

  • Galois group
  • Genus two curve
  • Sextic field
  • Trinomial

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Cyclic sextic trinomials x6 + Ax + B. / Bremner, Andrew; Spearman, Blair K.

In: International Journal of Number Theory, Vol. 6, No. 1, 02.2010, p. 161-167.

Research output: Contribution to journalArticle

Bremner, Andrew ; Spearman, Blair K. / Cyclic sextic trinomials x6 + Ax + B. In: International Journal of Number Theory. 2010 ; Vol. 6, No. 1. pp. 161-167.
@article{d336959cece040828764645107e27124,
title = "Cyclic sextic trinomials x6 + Ax + B",
abstract = "A correspondence is obtained between irreducible cyclic sextic trinomials x6 + Ax + B ∈ ℚ[x] and rational points on a genus two curve. This implies that up to scaling, x6 + 133x + 209 is the only cyclic sextic trinomial of the given type.",
keywords = "Galois group, Genus two curve, Sextic field, Trinomial",
author = "Andrew Bremner and Spearman, {Blair K.}",
year = "2010",
month = "2",
doi = "10.1142/S1793042110002843",
language = "English (US)",
volume = "6",
pages = "161--167",
journal = "International Journal of Number Theory",
issn = "1793-0421",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "1",

}

TY - JOUR

T1 - Cyclic sextic trinomials x6 + Ax + B

AU - Bremner, Andrew

AU - Spearman, Blair K.

PY - 2010/2

Y1 - 2010/2

N2 - A correspondence is obtained between irreducible cyclic sextic trinomials x6 + Ax + B ∈ ℚ[x] and rational points on a genus two curve. This implies that up to scaling, x6 + 133x + 209 is the only cyclic sextic trinomial of the given type.

AB - A correspondence is obtained between irreducible cyclic sextic trinomials x6 + Ax + B ∈ ℚ[x] and rational points on a genus two curve. This implies that up to scaling, x6 + 133x + 209 is the only cyclic sextic trinomial of the given type.

KW - Galois group

KW - Genus two curve

KW - Sextic field

KW - Trinomial

UR - http://www.scopus.com/inward/record.url?scp=77951549006&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951549006&partnerID=8YFLogxK

U2 - 10.1142/S1793042110002843

DO - 10.1142/S1793042110002843

M3 - Article

AN - SCOPUS:77951549006

VL - 6

SP - 161

EP - 167

JO - International Journal of Number Theory

JF - International Journal of Number Theory

SN - 1793-0421

IS - 1

ER -