Abstract

Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g. forcing the use of low-temperature silver pastes). We previously evidenced the superior temperature stability of low-carbon-content intrinsic amorphous silicon carbide (a-SiC x :H) passivating layers to sidestep this issue, and investigate here in more details the reason for the improved temperature stability. The passivation from intrinsic a-SiCx:H layers is shown to first improved upon annealing, and then degrade past 350 °C. The initial passivation can be improved and the degradation postponed by capping the a-SiCx:H layer by an a-Si:H film. We compare here the passivation provided by stacks of a-Si:H and a-SiC x :H, and investigate the hydrogen bonding and content of these films.

Original languageEnglish (US)
Title of host publication2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-3
Number of pages3
ISBN (Electronic)9781509056057
DOIs
StatePublished - 2017
Event44th IEEE Photovoltaic Specialist Conference, PVSC 2017 - Washington, United States
Duration: Jun 25 2017Jun 30 2017

Publication series

Name2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Other

Other44th IEEE Photovoltaic Specialist Conference, PVSC 2017
CountryUnited States
CityWashington
Period6/25/176/30/17

Keywords

  • Amorphous silicon
  • Amorphous silicon carbide
  • Hydrogen
  • Passivation
  • Temperature stability

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Crystalline silicon passivation with amorphous silicon carbide layers'. Together they form a unique fingerprint.

  • Cite this

    Boccard, M., Jackson, A., & Holman, Z. (2017). Crystalline silicon passivation with amorphous silicon carbide layers. In 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 (pp. 1-3). (2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/PVSC.2017.8366233