Crystal growth in silicon chemical vapor deposition from silane: The role of hydrogen

Meng Tao, Lee P. Hunt

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Crystal growth mechanisms in chemical vapor deposition (CVD) of silane are studied in some detail. An atomic view reveals that the free energy change upon the formation of a small crystal on the (100) silicon surface in Si-CVD from SiH4 is always negative, due to the presence of hydrogen. Therefore, nucleation and step growth are unnecessary, in contrast to crystal growth from melt. Epitaxial growth in this case takes place through iterative adsorption and desorption reactions on the periodic surface sites of the substrate. Slow desorption reactions result in vacancies and distorted bond angles which hinder epitaxial growth. Based on this model, the role of H desorption in low temperature Si epitaxy from SiH4 is investigated. A thermodynamic analysis implies that H desorption is the limiting factor to low temperature epitaxy in the pressure range of 1 to 760 Torr, and the pressure dependence of minimum epitaxial temperature is derived as Tepi(°C) = 106 log Ptot(Torr) + 668. Below 1 Torr, adsorption rate becomes the limiting factor to low temperature epitaxy.

Original languageEnglish (US)
Pages (from-to)2221-2225
Number of pages5
JournalJournal of the Electrochemical Society
Issue number6
StatePublished - Jun 1997
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry


Dive into the research topics of 'Crystal growth in silicon chemical vapor deposition from silane: The role of hydrogen'. Together they form a unique fingerprint.

Cite this