Critical assessment of the emission spectra of various photosystem II core complexes

Jinhai Chen, Adam Kell, Khem Acharya, Christopher Kupitz, Petra Fromme, Ryszard Jankowiak

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.

Original languageEnglish (US)
Pages (from-to)253-265
Number of pages13
JournalPhotosynthesis Research
Volume124
Issue number3
DOIs
StatePublished - Apr 2 2015

Fingerprint

Photosystem II Protein Complex
photosystem II
Spinacia oleracea
spinach
Electron energy levels
Temperature
Thermosynechococcus
Chlamydomonas reinhardtii
temperature
Pigments
annealing
energy
Fluorescence
crystals
Annealing
Membranes
traps
Crystals
pigments
fluorescence

Keywords

  • Energy transfer
  • Fluorescence
  • Light-harvesting
  • Photosynthesis
  • Photosystem II

ASJC Scopus subject areas

  • Plant Science
  • Cell Biology
  • Biochemistry

Cite this

Critical assessment of the emission spectra of various photosystem II core complexes. / Chen, Jinhai; Kell, Adam; Acharya, Khem; Kupitz, Christopher; Fromme, Petra; Jankowiak, Ryszard.

In: Photosynthesis Research, Vol. 124, No. 3, 02.04.2015, p. 253-265.

Research output: Contribution to journalArticle

Chen, Jinhai ; Kell, Adam ; Acharya, Khem ; Kupitz, Christopher ; Fromme, Petra ; Jankowiak, Ryszard. / Critical assessment of the emission spectra of various photosystem II core complexes. In: Photosynthesis Research. 2015 ; Vol. 124, No. 3. pp. 253-265.
@article{42da54dc39d747fc8c9f8722a67bc77b,
title = "Critical assessment of the emission spectra of various photosystem II core complexes",
abstract = "We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.",
keywords = "Energy transfer, Fluorescence, Light-harvesting, Photosynthesis, Photosystem II",
author = "Jinhai Chen and Adam Kell and Khem Acharya and Christopher Kupitz and Petra Fromme and Ryszard Jankowiak",
year = "2015",
month = "4",
day = "2",
doi = "10.1007/s11120-015-0128-7",
language = "English (US)",
volume = "124",
pages = "253--265",
journal = "Photosynthesis Research",
issn = "0166-8595",
publisher = "Springer Netherlands",
number = "3",

}

TY - JOUR

T1 - Critical assessment of the emission spectra of various photosystem II core complexes

AU - Chen, Jinhai

AU - Kell, Adam

AU - Acharya, Khem

AU - Kupitz, Christopher

AU - Fromme, Petra

AU - Jankowiak, Ryszard

PY - 2015/4/2

Y1 - 2015/4/2

N2 - We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.

AB - We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.

KW - Energy transfer

KW - Fluorescence

KW - Light-harvesting

KW - Photosynthesis

KW - Photosystem II

UR - http://www.scopus.com/inward/record.url?scp=84930378699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84930378699&partnerID=8YFLogxK

U2 - 10.1007/s11120-015-0128-7

DO - 10.1007/s11120-015-0128-7

M3 - Article

VL - 124

SP - 253

EP - 265

JO - Photosynthesis Research

JF - Photosynthesis Research

SN - 0166-8595

IS - 3

ER -