Criteria for assessing dynamic collapse of elastoplastic structural systems

Y. Araki, Keith Hjelmstad

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Criteria are presented for assessing the propensity for dynamic collapse of elastoplastic structural systems. To detect the onset of dynamic collapse, three key concepts are introduced. First, the equations of motion are linearized and time shifted rel ative to a reference time in a dynamic process. Second, we study the free vibration of the system after the reference time. Third, we use a modal decomposition of the response. We suggest that dynamic collapse is likely if (1) there exist negative eigenvalues of the Hessian of the total potential energy and (2) the direction of motion is consistent with the loading direction of the elastoplastic material. The direction of motion is determined by using the gradient of total potential energy and the eig enmodes corresponding to the negative eigenvalues. The fidelity of the present criteria is demonstrated through numerical examples for which the non-linear equations of motion can be integrated exactly. With the present approach, it becomes apparent that p-delta effects, the tangent stiffness, the internal resistance, and the direction of unloading all play key roles in the dynamic collapse of structures. Copyright (C) 2000 John Wiley and Sons, Ltd.

Original languageEnglish (US)
Pages (from-to)1177-1198
Number of pages22
JournalEarthquake Engineering and Structural Dynamics
Volume29
Issue number8
DOIs
StatePublished - 2000
Externally publishedYes

Fingerprint

eigenvalue
potential energy
Potential energy
Equations of motion
unloading
stiffness
vibration
Unloading
Nonlinear equations
decomposition
Stiffness
Decomposition
effect
material

Keywords

  • Dynamic collapse
  • Elastoplastic structures
  • Geometrical non-linearity
  • Linearization
  • Modal decomposition
  • Time shifting

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Geotechnical Engineering and Engineering Geology

Cite this

Criteria for assessing dynamic collapse of elastoplastic structural systems. / Araki, Y.; Hjelmstad, Keith.

In: Earthquake Engineering and Structural Dynamics, Vol. 29, No. 8, 2000, p. 1177-1198.

Research output: Contribution to journalArticle

@article{035b8ec92368432183460e71cb618652,
title = "Criteria for assessing dynamic collapse of elastoplastic structural systems",
abstract = "Criteria are presented for assessing the propensity for dynamic collapse of elastoplastic structural systems. To detect the onset of dynamic collapse, three key concepts are introduced. First, the equations of motion are linearized and time shifted rel ative to a reference time in a dynamic process. Second, we study the free vibration of the system after the reference time. Third, we use a modal decomposition of the response. We suggest that dynamic collapse is likely if (1) there exist negative eigenvalues of the Hessian of the total potential energy and (2) the direction of motion is consistent with the loading direction of the elastoplastic material. The direction of motion is determined by using the gradient of total potential energy and the eig enmodes corresponding to the negative eigenvalues. The fidelity of the present criteria is demonstrated through numerical examples for which the non-linear equations of motion can be integrated exactly. With the present approach, it becomes apparent that p-delta effects, the tangent stiffness, the internal resistance, and the direction of unloading all play key roles in the dynamic collapse of structures. Copyright (C) 2000 John Wiley and Sons, Ltd.",
keywords = "Dynamic collapse, Elastoplastic structures, Geometrical non-linearity, Linearization, Modal decomposition, Time shifting",
author = "Y. Araki and Keith Hjelmstad",
year = "2000",
doi = "10.1002/1096-9845(200008)29:8<1177::AID-EQE963>3.0.CO;2-E",
language = "English (US)",
volume = "29",
pages = "1177--1198",
journal = "Earthquake Engineering and Structural Dynamics",
issn = "0098-8847",
publisher = "John Wiley and Sons Ltd",
number = "8",

}

TY - JOUR

T1 - Criteria for assessing dynamic collapse of elastoplastic structural systems

AU - Araki, Y.

AU - Hjelmstad, Keith

PY - 2000

Y1 - 2000

N2 - Criteria are presented for assessing the propensity for dynamic collapse of elastoplastic structural systems. To detect the onset of dynamic collapse, three key concepts are introduced. First, the equations of motion are linearized and time shifted rel ative to a reference time in a dynamic process. Second, we study the free vibration of the system after the reference time. Third, we use a modal decomposition of the response. We suggest that dynamic collapse is likely if (1) there exist negative eigenvalues of the Hessian of the total potential energy and (2) the direction of motion is consistent with the loading direction of the elastoplastic material. The direction of motion is determined by using the gradient of total potential energy and the eig enmodes corresponding to the negative eigenvalues. The fidelity of the present criteria is demonstrated through numerical examples for which the non-linear equations of motion can be integrated exactly. With the present approach, it becomes apparent that p-delta effects, the tangent stiffness, the internal resistance, and the direction of unloading all play key roles in the dynamic collapse of structures. Copyright (C) 2000 John Wiley and Sons, Ltd.

AB - Criteria are presented for assessing the propensity for dynamic collapse of elastoplastic structural systems. To detect the onset of dynamic collapse, three key concepts are introduced. First, the equations of motion are linearized and time shifted rel ative to a reference time in a dynamic process. Second, we study the free vibration of the system after the reference time. Third, we use a modal decomposition of the response. We suggest that dynamic collapse is likely if (1) there exist negative eigenvalues of the Hessian of the total potential energy and (2) the direction of motion is consistent with the loading direction of the elastoplastic material. The direction of motion is determined by using the gradient of total potential energy and the eig enmodes corresponding to the negative eigenvalues. The fidelity of the present criteria is demonstrated through numerical examples for which the non-linear equations of motion can be integrated exactly. With the present approach, it becomes apparent that p-delta effects, the tangent stiffness, the internal resistance, and the direction of unloading all play key roles in the dynamic collapse of structures. Copyright (C) 2000 John Wiley and Sons, Ltd.

KW - Dynamic collapse

KW - Elastoplastic structures

KW - Geometrical non-linearity

KW - Linearization

KW - Modal decomposition

KW - Time shifting

UR - http://www.scopus.com/inward/record.url?scp=0033626043&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033626043&partnerID=8YFLogxK

U2 - 10.1002/1096-9845(200008)29:8<1177::AID-EQE963>3.0.CO;2-E

DO - 10.1002/1096-9845(200008)29:8<1177::AID-EQE963>3.0.CO;2-E

M3 - Article

VL - 29

SP - 1177

EP - 1198

JO - Earthquake Engineering and Structural Dynamics

JF - Earthquake Engineering and Structural Dynamics

SN - 0098-8847

IS - 8

ER -