Covering complete r-graphs with spanning complete r-partite r-graphs

Sebastian M. Cioabǎ, André Kündgen, Craig M. Timmons, Vladislav V. Vysotsky

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

An r-cut of the complete r-uniform hypergraph Krn is obtained by partitioning its vertex set into r parts and taking all edges that meet every part in exactly one vertex. In other words it is the edge set of a spanning complete r-partite subhypergraph of Krn. An r-cut cover is a collection of r-cuts such that each edge of Krn is in at least one of the cuts. While in the graph case r = 2 any 2-cut cover on average covers each edge at least 2-o(1) times, when r is odd we exhibit an r-cut cover in which each edge is covered exactly once. When r is even no such decomposition can exist, but we can bound the average number of times an edge is cut in an r-cut cover between 1+1/r+1 and 1+/1+o(1)/log r. The upper bound construction can be reformulated in terms of a natural polyhedral problem or as a probability problem, and we solve the latter asymptotically.

Original languageEnglish (US)
Pages (from-to)519-527
Number of pages9
JournalCombinatorics Probability and Computing
Volume20
Issue number4
DOIs
StatePublished - Jul 1 2011

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Statistics and Probability
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Covering complete r-graphs with spanning complete r-partite r-graphs'. Together they form a unique fingerprint.

  • Cite this