Cosmological variation of the fine structure constant from an ultralight scalar field

The effects of mass

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Cosmological variation of the fine structure constant due to the evolution of a spatially homogeneous ultralight scalar field (m∼H0) during the matter and A dominated eras is analyzed. Agreement of Δ α/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value ᾱ ≈α0 in the early radiation and the late A dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives or slightly away from a in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5-0.6 HA, where HA = ΩA 1/2H0. Depending on the scalar field mass, a may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α/α)0.

Original languageEnglish (US)
Article number043513
JournalPhysical Review D
Volume68
Issue number4
DOIs
StatePublished - 2003

Fingerprint

Fine Structure
Scalar Field
fine structure
scalars
meteorites
Reactor
reactors
Quasars
nuclear fusion
solar system
quasars
Microwave
fission
Absorption
adjusting
time measurement
Radiation
microwaves
Line
radiation

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Nuclear and High Energy Physics
  • Mathematical Physics

Cite this

Cosmological variation of the fine structure constant from an ultralight scalar field : The effects of mass. / Gardner, Carl.

In: Physical Review D, Vol. 68, No. 4, 043513, 2003.

Research output: Contribution to journalArticle

@article{f464566fee8548579a3f2eaeea57a000,
title = "Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass",
abstract = "Cosmological variation of the fine structure constant due to the evolution of a spatially homogeneous ultralight scalar field (m∼H0) during the matter and A dominated eras is analyzed. Agreement of Δ α/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value ᾱ ≈α0 in the early radiation and the late A dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives or slightly away from a in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5-0.6 HA, where HA = ΩA 1/2H0. Depending on the scalar field mass, a may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α/α)0.",
author = "Carl Gardner",
year = "2003",
doi = "10.1103/PhysRevD.68.043513",
language = "English (US)",
volume = "68",
journal = "Physical review D: Particles and fields",
issn = "1550-7998",
publisher = "American Institute of Physics Publising LLC",
number = "4",

}

TY - JOUR

T1 - Cosmological variation of the fine structure constant from an ultralight scalar field

T2 - The effects of mass

AU - Gardner, Carl

PY - 2003

Y1 - 2003

N2 - Cosmological variation of the fine structure constant due to the evolution of a spatially homogeneous ultralight scalar field (m∼H0) during the matter and A dominated eras is analyzed. Agreement of Δ α/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value ᾱ ≈α0 in the early radiation and the late A dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives or slightly away from a in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5-0.6 HA, where HA = ΩA 1/2H0. Depending on the scalar field mass, a may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α/α)0.

AB - Cosmological variation of the fine structure constant due to the evolution of a spatially homogeneous ultralight scalar field (m∼H0) during the matter and A dominated eras is analyzed. Agreement of Δ α/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value ᾱ ≈α0 in the early radiation and the late A dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives or slightly away from a in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5-0.6 HA, where HA = ΩA 1/2H0. Depending on the scalar field mass, a may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α/α)0.

UR - http://www.scopus.com/inward/record.url?scp=0141433362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141433362&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.68.043513

DO - 10.1103/PhysRevD.68.043513

M3 - Article

VL - 68

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 1550-7998

IS - 4

M1 - 043513

ER -