Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass

Carl Gardner

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Cosmological variation of the fine structure constant due to the evolution of a spatially homogeneous ultralight scalar field (m∼H0) during the matter and A dominated eras is analyzed. Agreement of Δ α/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value ᾱ ≈α0 in the early radiation and the late A dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives or slightly away from a in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5-0.6 HA, where HA = ΩA 1/2H0. Depending on the scalar field mass, a may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α/α)0.

Original languageEnglish (US)
Article number043513
JournalPhysical Review D
Volume68
Issue number4
DOIs
StatePublished - 2003

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass'. Together they form a unique fingerprint.

Cite this