Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates

Research output: Contribution to journalArticle

Abstract

Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.

Original languageEnglish (US)
Pages (from-to)1-8
Number of pages8
JournalJournal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
DOIs
StateAccepted/In press - Jan 30 2018

Fingerprint

Escherichia coli
Toxicity
Nanoparticles
Copper
Enzyme activity
Ecology
Bacteria
Impurities
Glutathione
Oxidoreductases

Keywords

  • E. coli
  • environmental isolate
  • lab strain
  • Nanoparticles
  • toxicity mechanism

ASJC Scopus subject areas

  • Environmental Engineering

Cite this

@article{1faf2a6ee51d4ddaa07e73812d2ca6ac,
title = "Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates",
abstract = "Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.",
keywords = "E. coli, environmental isolate, lab strain, Nanoparticles, toxicity mechanism",
author = "Absar Alum and Ali Alboloushi and Morteza Abbaszadegan",
year = "2018",
month = "1",
day = "30",
doi = "10.1080/10934529.2018.1429727",
language = "English (US)",
pages = "1--8",
journal = "Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering",
issn = "1093-4529",
publisher = "Taylor and Francis Ltd.",

}

TY - JOUR

T1 - Copper nanoparticles toxicity

T2 - Laboratory strains verses environmental bacterial isolates

AU - Alum, Absar

AU - Alboloushi, Ali

AU - Abbaszadegan, Morteza

PY - 2018/1/30

Y1 - 2018/1/30

N2 - Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.

AB - Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.

KW - E. coli

KW - environmental isolate

KW - lab strain

KW - Nanoparticles

KW - toxicity mechanism

UR - http://www.scopus.com/inward/record.url?scp=85041202811&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041202811&partnerID=8YFLogxK

U2 - 10.1080/10934529.2018.1429727

DO - 10.1080/10934529.2018.1429727

M3 - Article

SP - 1

EP - 8

JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering

JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering

SN - 1093-4529

ER -