Abstract

Small amounts (5at.%) of copper were added to silver thin films to improve adhesion and minimize agglomeration on SiO2 layers. Resistivity measurements from the Ag(Cu) films showed that small Cu additions do not significantly increase the resistivity compared to pure Ag. Texture evolution and surface morphology of Ag and Ag(Cu) thin films on SiO2 were also investigated using x-ray diffraction (XRD) techniques and atomic force microscopy. Normalized (111) θ-2θ XRD intensities increased from 91.6% to 96.8% upon addition of Cu, likely due to enhanced adatom diffusion resulting from the Cu addition. XRD pole figure analysis revealed differences in texture evolution between the Ag and Ag(Cu) thin films. Since high adatom surface diffusion of Cu promotes preferred grain growth of the Ag matrix, Ag(Cu) thin films showed enhanced (111) texture compared to Ag thin films. Glancing angle XRD results confirmed the evolution of (111) texture in the Ag and Ag(Cu) thin films. In the case of Ag, (111) texture was enhanced mainly by recrystallization of disordered regions during annealing. In addition to recrystallization, (111) texture enhancement in Ag(Cu) was attributed to consumption of grains with other non-(111) crystallographic orientations.

Original languageEnglish (US)
Article number083548
JournalJournal of Applied Physics
Volume102
Issue number8
DOIs
StatePublished - 2007

Fingerprint

textures
silver
copper
x ray diffraction
thin films
adatoms
electrical resistivity
surface diffusion
agglomeration
adhesion
poles
atomic force microscopy
annealing
augmentation
matrices

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Copper enhanced (111) texture in silver thin films on amorphous SiO 2 . / Zoo, Yeongseok; Han, H.; Alford, Terry.

In: Journal of Applied Physics, Vol. 102, No. 8, 083548, 2007.

Research output: Contribution to journalArticle

@article{1de520f5662c4d4996a22a495b5e2221,
title = "Copper enhanced (111) texture in silver thin films on amorphous SiO 2",
abstract = "Small amounts (5at.{\%}) of copper were added to silver thin films to improve adhesion and minimize agglomeration on SiO2 layers. Resistivity measurements from the Ag(Cu) films showed that small Cu additions do not significantly increase the resistivity compared to pure Ag. Texture evolution and surface morphology of Ag and Ag(Cu) thin films on SiO2 were also investigated using x-ray diffraction (XRD) techniques and atomic force microscopy. Normalized (111) θ-2θ XRD intensities increased from 91.6{\%} to 96.8{\%} upon addition of Cu, likely due to enhanced adatom diffusion resulting from the Cu addition. XRD pole figure analysis revealed differences in texture evolution between the Ag and Ag(Cu) thin films. Since high adatom surface diffusion of Cu promotes preferred grain growth of the Ag matrix, Ag(Cu) thin films showed enhanced (111) texture compared to Ag thin films. Glancing angle XRD results confirmed the evolution of (111) texture in the Ag and Ag(Cu) thin films. In the case of Ag, (111) texture was enhanced mainly by recrystallization of disordered regions during annealing. In addition to recrystallization, (111) texture enhancement in Ag(Cu) was attributed to consumption of grains with other non-(111) crystallographic orientations.",
author = "Yeongseok Zoo and H. Han and Terry Alford",
year = "2007",
doi = "10.1063/1.2800998",
language = "English (US)",
volume = "102",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "8",

}

TY - JOUR

T1 - Copper enhanced (111) texture in silver thin films on amorphous SiO 2

AU - Zoo, Yeongseok

AU - Han, H.

AU - Alford, Terry

PY - 2007

Y1 - 2007

N2 - Small amounts (5at.%) of copper were added to silver thin films to improve adhesion and minimize agglomeration on SiO2 layers. Resistivity measurements from the Ag(Cu) films showed that small Cu additions do not significantly increase the resistivity compared to pure Ag. Texture evolution and surface morphology of Ag and Ag(Cu) thin films on SiO2 were also investigated using x-ray diffraction (XRD) techniques and atomic force microscopy. Normalized (111) θ-2θ XRD intensities increased from 91.6% to 96.8% upon addition of Cu, likely due to enhanced adatom diffusion resulting from the Cu addition. XRD pole figure analysis revealed differences in texture evolution between the Ag and Ag(Cu) thin films. Since high adatom surface diffusion of Cu promotes preferred grain growth of the Ag matrix, Ag(Cu) thin films showed enhanced (111) texture compared to Ag thin films. Glancing angle XRD results confirmed the evolution of (111) texture in the Ag and Ag(Cu) thin films. In the case of Ag, (111) texture was enhanced mainly by recrystallization of disordered regions during annealing. In addition to recrystallization, (111) texture enhancement in Ag(Cu) was attributed to consumption of grains with other non-(111) crystallographic orientations.

AB - Small amounts (5at.%) of copper were added to silver thin films to improve adhesion and minimize agglomeration on SiO2 layers. Resistivity measurements from the Ag(Cu) films showed that small Cu additions do not significantly increase the resistivity compared to pure Ag. Texture evolution and surface morphology of Ag and Ag(Cu) thin films on SiO2 were also investigated using x-ray diffraction (XRD) techniques and atomic force microscopy. Normalized (111) θ-2θ XRD intensities increased from 91.6% to 96.8% upon addition of Cu, likely due to enhanced adatom diffusion resulting from the Cu addition. XRD pole figure analysis revealed differences in texture evolution between the Ag and Ag(Cu) thin films. Since high adatom surface diffusion of Cu promotes preferred grain growth of the Ag matrix, Ag(Cu) thin films showed enhanced (111) texture compared to Ag thin films. Glancing angle XRD results confirmed the evolution of (111) texture in the Ag and Ag(Cu) thin films. In the case of Ag, (111) texture was enhanced mainly by recrystallization of disordered regions during annealing. In addition to recrystallization, (111) texture enhancement in Ag(Cu) was attributed to consumption of grains with other non-(111) crystallographic orientations.

UR - http://www.scopus.com/inward/record.url?scp=57049138788&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57049138788&partnerID=8YFLogxK

U2 - 10.1063/1.2800998

DO - 10.1063/1.2800998

M3 - Article

AN - SCOPUS:57049138788

VL - 102

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 8

M1 - 083548

ER -