Converse Lyapunov Functions and Converging Inner Approximations to Maximal Regions of Attraction of Nonlinear Systems

Morgan Jones, Matthew M. Peet

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers the problem of approximating the "maximal"region of attraction (the set that contains all asymptotically stable sets) of any given set of locally exponentially stable nonlinear Ordinary Differential Equations (ODEs) with a sufficiently smooth vector field. Given a locally exponential stable ODE with a differentiable vector field, we show that there exists a globally Lipschitz continuous converse Lyapunov function whose 1-sublevel set is equal to the maximal region of attraction of the ODE. We then propose a sequence of d-degree Sum-of-Squares (SOS) programming problems that yields a sequence of polynomials that converges to our proposed converse Lyapunov function uniformly from above in the L1 norm. We show that each member of the sequence of 1-sublevel sets of the polynomial solutions to our proposed sequence of SOS programming problems are certifiably contained inside the maximal region of attraction of the ODE, and moreover, we show that this sequence of sublevel sets converges to the maximal region of attraction of the ODE with respect to the volume metric. We provide numerical examples of estimations of the maximal region of attraction for the Van der Pol oscillator and a three dimensional servomechanism.

Original languageEnglish (US)
Title of host publication60th IEEE Conference on Decision and Control, CDC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5312-5319
Number of pages8
ISBN (Electronic)9781665436595
DOIs
StatePublished - 2021
Event60th IEEE Conference on Decision and Control, CDC 2021 - Austin, United States
Duration: Dec 13 2021Dec 17 2021

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2021-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference60th IEEE Conference on Decision and Control, CDC 2021
Country/TerritoryUnited States
CityAustin
Period12/13/2112/17/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Converse Lyapunov Functions and Converging Inner Approximations to Maximal Regions of Attraction of Nonlinear Systems'. Together they form a unique fingerprint.

Cite this