Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

S. Ono, A. R. Whitehill, James Lyons

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO 2 is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO2 photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO2 in 0.25 to 1 bar N 2 bath gas, in order to test the effect of SO2 pressure on the production of S-MIF. Elemental sulfur products yield high δ34S values up to 140 ‰, with δ33S/ δ34S of 0.59 ± 0.04 and Δ36S/ Δ33S ratios of -4.6 ± 1.3 with respect to initial SO2. The magnitude of the isotope effect strongly depends on SO 2 partial pressure, with larger fractionations at higher SO 2 pressures, but saturates at an SO2 column density of 1018 molecules cm-2. The observed pressure dependence and δ33S/δ34S and Δ36S/ Δ33S ratios are consistent with model calculations based on synthesized SO2 isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO2 pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ36S/Δ33S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.

Original languageEnglish (US)
Pages (from-to)2444-2454
Number of pages11
JournalJournal of Geophysical Research Atmospheres
Volume118
Issue number5
DOIs
StatePublished - Mar 16 2013
Externally publishedYes

Fingerprint

Sulfur Dioxide
sulfur dioxides
photolysis
Photolysis
sulfur dioxide
Fractionation
Sulfur
fractionation
Shielding
shielding
sulfur
Upper atmosphere
Volcanic Eruptions
aerosols
Aerosols
Sulfates
sulfates
aerosol
sulfate
Isotopes

Keywords

  • mass-independent fractionation
  • MIF
  • photolysis
  • SO2
  • sulfate aerosol
  • sulfur isotope

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis. / Ono, S.; Whitehill, A. R.; Lyons, James.

In: Journal of Geophysical Research Atmospheres, Vol. 118, No. 5, 16.03.2013, p. 2444-2454.

Research output: Contribution to journalArticle

@article{63f37f64a43543ada42e27d703ee6039,
title = "Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis",
abstract = "Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO 2 is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO2 photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO2 in 0.25 to 1 bar N 2 bath gas, in order to test the effect of SO2 pressure on the production of S-MIF. Elemental sulfur products yield high δ34S values up to 140 ‰, with δ33S/ δ34S of 0.59 ± 0.04 and Δ36S/ Δ33S ratios of -4.6 ± 1.3 with respect to initial SO2. The magnitude of the isotope effect strongly depends on SO 2 partial pressure, with larger fractionations at higher SO 2 pressures, but saturates at an SO2 column density of 1018 molecules cm-2. The observed pressure dependence and δ33S/δ34S and Δ36S/ Δ33S ratios are consistent with model calculations based on synthesized SO2 isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO2 pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ36S/Δ33S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.",
keywords = "mass-independent fractionation, MIF, photolysis, SO2, sulfate aerosol, sulfur isotope",
author = "S. Ono and Whitehill, {A. R.} and James Lyons",
year = "2013",
month = "3",
day = "16",
doi = "10.1002/jgrd.50183",
language = "English (US)",
volume = "118",
pages = "2444--2454",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
publisher = "Wiley-Blackwell",
number = "5",

}

TY - JOUR

T1 - Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

AU - Ono, S.

AU - Whitehill, A. R.

AU - Lyons, James

PY - 2013/3/16

Y1 - 2013/3/16

N2 - Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO 2 is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO2 photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO2 in 0.25 to 1 bar N 2 bath gas, in order to test the effect of SO2 pressure on the production of S-MIF. Elemental sulfur products yield high δ34S values up to 140 ‰, with δ33S/ δ34S of 0.59 ± 0.04 and Δ36S/ Δ33S ratios of -4.6 ± 1.3 with respect to initial SO2. The magnitude of the isotope effect strongly depends on SO 2 partial pressure, with larger fractionations at higher SO 2 pressures, but saturates at an SO2 column density of 1018 molecules cm-2. The observed pressure dependence and δ33S/δ34S and Δ36S/ Δ33S ratios are consistent with model calculations based on synthesized SO2 isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO2 pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ36S/Δ33S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.

AB - Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO 2 is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO2 photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO2 in 0.25 to 1 bar N 2 bath gas, in order to test the effect of SO2 pressure on the production of S-MIF. Elemental sulfur products yield high δ34S values up to 140 ‰, with δ33S/ δ34S of 0.59 ± 0.04 and Δ36S/ Δ33S ratios of -4.6 ± 1.3 with respect to initial SO2. The magnitude of the isotope effect strongly depends on SO 2 partial pressure, with larger fractionations at higher SO 2 pressures, but saturates at an SO2 column density of 1018 molecules cm-2. The observed pressure dependence and δ33S/δ34S and Δ36S/ Δ33S ratios are consistent with model calculations based on synthesized SO2 isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO2 pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ36S/Δ33S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.

KW - mass-independent fractionation

KW - MIF

KW - photolysis

KW - SO2

KW - sulfate aerosol

KW - sulfur isotope

UR - http://www.scopus.com/inward/record.url?scp=84878131164&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878131164&partnerID=8YFLogxK

U2 - 10.1002/jgrd.50183

DO - 10.1002/jgrd.50183

M3 - Article

VL - 118

SP - 2444

EP - 2454

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 5

ER -