Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803

Dmitrii Vavilin, Willem Vermaas

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de-esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II-less strain and was accelerated in wild-type cells upon exposure to strong light. These data suggest that most chlorophyll appears to be de-esterified in Synechocystis upon dissociation and repair of damaged photosystem II. A substantial part of chlorophyllide and phytol released upon the de-esterification of chlorophyll can be recycled for the biosynthesis of new chlorophyll molecules contributing to the formation of 13Por12Phy and 12Por13Phy chlorophyll pools. The phytol kinase, Slr1652, plays a significant but not absolutely critical role in this recycling process.

Original languageEnglish (US)
Pages (from-to)920-929
Number of pages10
JournalBiochimica et Biophysica Acta - Bioenergetics
Volume1767
Issue number7
DOIs
StatePublished - Jul 2007

Fingerprint

Chlorophyllides
Phytol
Synechocystis
Chlorophyll
Degradation
Photosystem II Protein Complex
Esterification
Porphyrins
Molecules
Photosystem I Protein Complex
Glucose
Biosynthesis
Recycling
Cyanobacteria

Keywords

  • Chlorophyll biosynthesis
  • Chlorophyll degradation
  • Cyanobacteria
  • Mass spectrometry
  • Stable isotope labeling

ASJC Scopus subject areas

  • Biophysics

Cite this

@article{1e903035934b46369a56f5e7041075a6,
title = "Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803",
abstract = "Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de-esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II-less strain and was accelerated in wild-type cells upon exposure to strong light. These data suggest that most chlorophyll appears to be de-esterified in Synechocystis upon dissociation and repair of damaged photosystem II. A substantial part of chlorophyllide and phytol released upon the de-esterification of chlorophyll can be recycled for the biosynthesis of new chlorophyll molecules contributing to the formation of 13Por12Phy and 12Por13Phy chlorophyll pools. The phytol kinase, Slr1652, plays a significant but not absolutely critical role in this recycling process.",
keywords = "Chlorophyll biosynthesis, Chlorophyll degradation, Cyanobacteria, Mass spectrometry, Stable isotope labeling",
author = "Dmitrii Vavilin and Willem Vermaas",
year = "2007",
month = "7",
doi = "10.1016/j.bbabio.2007.03.010",
language = "English (US)",
volume = "1767",
pages = "920--929",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "7",

}

TY - JOUR

T1 - Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803

AU - Vavilin, Dmitrii

AU - Vermaas, Willem

PY - 2007/7

Y1 - 2007/7

N2 - Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de-esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II-less strain and was accelerated in wild-type cells upon exposure to strong light. These data suggest that most chlorophyll appears to be de-esterified in Synechocystis upon dissociation and repair of damaged photosystem II. A substantial part of chlorophyllide and phytol released upon the de-esterification of chlorophyll can be recycled for the biosynthesis of new chlorophyll molecules contributing to the formation of 13Por12Phy and 12Por13Phy chlorophyll pools. The phytol kinase, Slr1652, plays a significant but not absolutely critical role in this recycling process.

AB - Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de-esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II-less strain and was accelerated in wild-type cells upon exposure to strong light. These data suggest that most chlorophyll appears to be de-esterified in Synechocystis upon dissociation and repair of damaged photosystem II. A substantial part of chlorophyllide and phytol released upon the de-esterification of chlorophyll can be recycled for the biosynthesis of new chlorophyll molecules contributing to the formation of 13Por12Phy and 12Por13Phy chlorophyll pools. The phytol kinase, Slr1652, plays a significant but not absolutely critical role in this recycling process.

KW - Chlorophyll biosynthesis

KW - Chlorophyll degradation

KW - Cyanobacteria

KW - Mass spectrometry

KW - Stable isotope labeling

UR - http://www.scopus.com/inward/record.url?scp=34447092491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34447092491&partnerID=8YFLogxK

U2 - 10.1016/j.bbabio.2007.03.010

DO - 10.1016/j.bbabio.2007.03.010

M3 - Article

VL - 1767

SP - 920

EP - 929

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 7

ER -