Content-balancing strategy in bifactor computerized adaptive patient-reported outcome measurement

Yi Zheng, Chih Hung Chang, Hua Hua Chang

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Purpose: Most multidimensional patient-reported outcomes (PRO) measures are lengthy to complete. Computerized adaptive testing (CAT) that selects the most informative items can potentially reduce respondent burden without sacrificing measurement accuracy. The commonly used maximum Fisher information item selection method has been reported to lead to highly unbalanced item bank usage and potentially imprecise trait estimation. This study employs the content-balancing strategy in a bifactor-modeled CAT item selection and examines its impact on measurement accuracy and item bank usage. Methods: Item responses from a population-based SF-36 survey were first calibrated using the bifactor graded response model. Four post hoc CATs using items and responses from the SF-36 data set were then created. The content-balancing strategy was adopted in the item selection procedure of the bifactor-modeled CAT. The measurement accuracy and usage of items of the CAT were compared between the tests with and without the content-balancing strategy. Results: The results indicate that the CAT implemented with the content-balancing strategy offers a better overall measurement accuracy of both the general health status and the two health domains (physical and mental) of the SF-36. Conclusions: The content-balancing strategy helps the CAT-PRO to balance the selection of items and achieve improved measurement accuracy. Its implementation in real-time CAT administration to measure multidimensional PRO traits merits further studies.

Original languageEnglish (US)
Pages (from-to)491-499
Number of pages9
JournalQuality of Life Research
Volume22
Issue number3
DOIs
StatePublished - Apr 2013
Externally publishedYes

Fingerprint

Health Status
Health
Population
Patient Reported Outcome Measures
Surveys and Questionnaires
Datasets

Keywords

  • Bifactor model
  • Computerized adaptive testing
  • Content-balancing
  • Item selection
  • Patient-reported outcomes (PRO)
  • SF-36

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Medicine(all)

Cite this

Content-balancing strategy in bifactor computerized adaptive patient-reported outcome measurement. / Zheng, Yi; Chang, Chih Hung; Chang, Hua Hua.

In: Quality of Life Research, Vol. 22, No. 3, 04.2013, p. 491-499.

Research output: Contribution to journalArticle

@article{939d0e59ab8445b5b12f6c41f728793d,
title = "Content-balancing strategy in bifactor computerized adaptive patient-reported outcome measurement",
abstract = "Purpose: Most multidimensional patient-reported outcomes (PRO) measures are lengthy to complete. Computerized adaptive testing (CAT) that selects the most informative items can potentially reduce respondent burden without sacrificing measurement accuracy. The commonly used maximum Fisher information item selection method has been reported to lead to highly unbalanced item bank usage and potentially imprecise trait estimation. This study employs the content-balancing strategy in a bifactor-modeled CAT item selection and examines its impact on measurement accuracy and item bank usage. Methods: Item responses from a population-based SF-36 survey were first calibrated using the bifactor graded response model. Four post hoc CATs using items and responses from the SF-36 data set were then created. The content-balancing strategy was adopted in the item selection procedure of the bifactor-modeled CAT. The measurement accuracy and usage of items of the CAT were compared between the tests with and without the content-balancing strategy. Results: The results indicate that the CAT implemented with the content-balancing strategy offers a better overall measurement accuracy of both the general health status and the two health domains (physical and mental) of the SF-36. Conclusions: The content-balancing strategy helps the CAT-PRO to balance the selection of items and achieve improved measurement accuracy. Its implementation in real-time CAT administration to measure multidimensional PRO traits merits further studies.",
keywords = "Bifactor model, Computerized adaptive testing, Content-balancing, Item selection, Patient-reported outcomes (PRO), SF-36",
author = "Yi Zheng and Chang, {Chih Hung} and Chang, {Hua Hua}",
year = "2013",
month = "4",
doi = "10.1007/s11136-012-0179-6",
language = "English (US)",
volume = "22",
pages = "491--499",
journal = "Quality of Life Research",
issn = "0962-9343",
publisher = "Springer Netherlands",
number = "3",

}

TY - JOUR

T1 - Content-balancing strategy in bifactor computerized adaptive patient-reported outcome measurement

AU - Zheng, Yi

AU - Chang, Chih Hung

AU - Chang, Hua Hua

PY - 2013/4

Y1 - 2013/4

N2 - Purpose: Most multidimensional patient-reported outcomes (PRO) measures are lengthy to complete. Computerized adaptive testing (CAT) that selects the most informative items can potentially reduce respondent burden without sacrificing measurement accuracy. The commonly used maximum Fisher information item selection method has been reported to lead to highly unbalanced item bank usage and potentially imprecise trait estimation. This study employs the content-balancing strategy in a bifactor-modeled CAT item selection and examines its impact on measurement accuracy and item bank usage. Methods: Item responses from a population-based SF-36 survey were first calibrated using the bifactor graded response model. Four post hoc CATs using items and responses from the SF-36 data set were then created. The content-balancing strategy was adopted in the item selection procedure of the bifactor-modeled CAT. The measurement accuracy and usage of items of the CAT were compared between the tests with and without the content-balancing strategy. Results: The results indicate that the CAT implemented with the content-balancing strategy offers a better overall measurement accuracy of both the general health status and the two health domains (physical and mental) of the SF-36. Conclusions: The content-balancing strategy helps the CAT-PRO to balance the selection of items and achieve improved measurement accuracy. Its implementation in real-time CAT administration to measure multidimensional PRO traits merits further studies.

AB - Purpose: Most multidimensional patient-reported outcomes (PRO) measures are lengthy to complete. Computerized adaptive testing (CAT) that selects the most informative items can potentially reduce respondent burden without sacrificing measurement accuracy. The commonly used maximum Fisher information item selection method has been reported to lead to highly unbalanced item bank usage and potentially imprecise trait estimation. This study employs the content-balancing strategy in a bifactor-modeled CAT item selection and examines its impact on measurement accuracy and item bank usage. Methods: Item responses from a population-based SF-36 survey were first calibrated using the bifactor graded response model. Four post hoc CATs using items and responses from the SF-36 data set were then created. The content-balancing strategy was adopted in the item selection procedure of the bifactor-modeled CAT. The measurement accuracy and usage of items of the CAT were compared between the tests with and without the content-balancing strategy. Results: The results indicate that the CAT implemented with the content-balancing strategy offers a better overall measurement accuracy of both the general health status and the two health domains (physical and mental) of the SF-36. Conclusions: The content-balancing strategy helps the CAT-PRO to balance the selection of items and achieve improved measurement accuracy. Its implementation in real-time CAT administration to measure multidimensional PRO traits merits further studies.

KW - Bifactor model

KW - Computerized adaptive testing

KW - Content-balancing

KW - Item selection

KW - Patient-reported outcomes (PRO)

KW - SF-36

UR - http://www.scopus.com/inward/record.url?scp=84876499414&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84876499414&partnerID=8YFLogxK

U2 - 10.1007/s11136-012-0179-6

DO - 10.1007/s11136-012-0179-6

M3 - Article

C2 - 22538634

AN - SCOPUS:84876499414

VL - 22

SP - 491

EP - 499

JO - Quality of Life Research

JF - Quality of Life Research

SN - 0962-9343

IS - 3

ER -