Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES

Michael J. Wolff, Michael D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, Mark T. Lemmon, J. L. Bandfield, D. Banfield, Amitabha Ghosh, G. Landis, Philip Christensen, James Bell, Steven W. Squyres

Research output: Contribution to journalArticle

121 Scopus citations

Abstract

Overflights of the Mars Exploration Rovers (MER) by the Mars Global Surveyor (MGS) provide a unique opportunity to examine some of the basic properties of dust aerosols, starting with one of the most fundamental, the indices of refraction (m = n + ik) in the infrared. The upward-viewing geometry of the Miniature Thermal Emission Spectrometer (Mini-TES) and the combined contemporaneous observations from both MER and MGS are powerful tools. Their use allows atmospheric retrievals to directly determine n and k while offering constraints for the menagerie of other radiative transfer input parameters. We exploit these coordinated observing campaigns, along additional data sources, to carry out series of radiative transfer analyses that ultimately return the set of refractive indices. We apply the resulting m to a larger sample of Mini-TES data to both further validate our approach and retrieve several other aerosol properties, including dust optical depth, dust size, and a measure of the vertical mixing profile. We find good agreement with the empirical approach of Smith et al. (2006), in terms of both the optical depths themselves and the frequency dependence of their extinction cross section and single scattering albedo. The retrieved dust sizes vary from near 1.3 μm to 1.8 μm within the selected sample, with a precision estimated to be ≃-0.1-0.2 μm. The vertical mixing profile evolves from well-mixed to appreciably confined by Ls ∼ 30°. For Spirit (MER-A), there is an abrupt transition back to a more well-mixed vertical profile with the onset of regional dust activity at Ls ∼ 140°. We discuss the lack of a definitive detection of water ice clouds in Mini-TES observations and the potential effects of vertical gradients in particle size distribution. Finally, as part of coordinated overflight analyses, an atmospherically corrected TES Lambert albedo map is derived and presented in Appendix A.

Original languageEnglish (US)
Article numberE12S17
JournalJournal of Geophysical Research E: Planets
Volume111
Issue number12
DOIs
StatePublished - Dec 20 2006

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES'. Together they form a unique fingerprint.

  • Cite this

    Wolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A., Lemmon, M. T., Bandfield, J. L., Banfield, D., Ghosh, A., Landis, G., Christensen, P., Bell, J., & Squyres, S. W. (2006). Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. Journal of Geophysical Research E: Planets, 111(12), [E12S17]. https://doi.org/10.1029/2006JE002786