Abstract
We use two different techniques to derive the two parameters describing conduction electron scattering and spin-flipping at sputtered Al/Cu interfaces in the current-perpendicular-to-plane (CPP) geometry. These parameters are: 2ARAl/Cu, twice the interface specific resistance, where A is the area through which the CPP current flows; and δAl/Cu, which gives the probability P of spin-flipping from P = 1 - exp(δ-). A technique involving simple multilayers, and sample temperature not exceeding room temperature, gives 2ARAl/Cu = 2.3 ± 0.2 fΩm2. A technique involving exchange-biased spin-valves (EBSVs), where the sample is annealed briefly to 453 K, gives 2ARAl/Cu = 2.0 ± 0.15 fΩm2. Averaging the two values, but increasing the uncertainty for reasons explained, gives the best estimate of 2ARAl/Cu 2.15 ± 0.4 fΩm2. This average is comparable to, but smaller than, the published value of 2ARAl/Cu 3.6 ± 1 fΩm 2 derived from thermal conductance measurements, and larger than our calculated values for interface thicknesses up to 6 monolayers (ML). However, it is similar to our calculated values for an interface thickness of 8 ML. Combining extrapolation of higher temperature bulk diffusion data for Al in Cu and vice-versa, with x-ray and transmission electron microscope (TEM) studies of similarly sputtered multilayers, indicates that such interface thicknesses are possible, especially for annealed multilayers. CPP-magnetoresistance (MR) measurements of the EBSV samples give only very small spin-flipping at the Al/Cu interface-δAl/Cu 0.05-0.05+0.02. Such a small value is consistent with expected small spin-orbit interactions in both Al and Cu. Supplementary studies of CPP-MR of Permalloy (Py)-based EBSVs containing [Cu/Al/Cu] trilayers, show unusual behavior when the central Al layer is at least 10 nm thick, giving a CPP-MR like that for Py/Al, independent of Cu layer thicknesses from 0 to 10 nm. MR, x-ray, and TEM results give some clues as to the origins of this behavior, but a completely satisfactory explanation is not yet available.
Original language | English (US) |
---|---|
Article number | 053903 |
Journal | Journal of Applied Physics |
Volume | 109 |
Issue number | 5 |
DOIs | |
State | Published - Mar 1 2011 |
Fingerprint
ASJC Scopus subject areas
- Physics and Astronomy(all)
Cite this
Conduction electron scattering and spin-flipping at sputtered Al/Cu Interfaces. / Sharma, A.; Theodoropoulou, N.; Loloee, R.; Pratt, W. P.; Bass, J.; Zhang, J. M.; Crimp, M. A.; Cullen, D. A.; Smith, David; Liu, Kai; Wang, Shuai; Xia, Ke.
In: Journal of Applied Physics, Vol. 109, No. 5, 053903, 01.03.2011.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Conduction electron scattering and spin-flipping at sputtered Al/Cu Interfaces
AU - Sharma, A.
AU - Theodoropoulou, N.
AU - Loloee, R.
AU - Pratt, W. P.
AU - Bass, J.
AU - Zhang, J. M.
AU - Crimp, M. A.
AU - Cullen, D. A.
AU - Smith, David
AU - Liu, Kai
AU - Wang, Shuai
AU - Xia, Ke
PY - 2011/3/1
Y1 - 2011/3/1
N2 - We use two different techniques to derive the two parameters describing conduction electron scattering and spin-flipping at sputtered Al/Cu interfaces in the current-perpendicular-to-plane (CPP) geometry. These parameters are: 2ARAl/Cu, twice the interface specific resistance, where A is the area through which the CPP current flows; and δAl/Cu, which gives the probability P of spin-flipping from P = 1 - exp(δ-). A technique involving simple multilayers, and sample temperature not exceeding room temperature, gives 2ARAl/Cu = 2.3 ± 0.2 fΩm2. A technique involving exchange-biased spin-valves (EBSVs), where the sample is annealed briefly to 453 K, gives 2ARAl/Cu = 2.0 ± 0.15 fΩm2. Averaging the two values, but increasing the uncertainty for reasons explained, gives the best estimate of 2ARAl/Cu 2.15 ± 0.4 fΩm2. This average is comparable to, but smaller than, the published value of 2ARAl/Cu 3.6 ± 1 fΩm 2 derived from thermal conductance measurements, and larger than our calculated values for interface thicknesses up to 6 monolayers (ML). However, it is similar to our calculated values for an interface thickness of 8 ML. Combining extrapolation of higher temperature bulk diffusion data for Al in Cu and vice-versa, with x-ray and transmission electron microscope (TEM) studies of similarly sputtered multilayers, indicates that such interface thicknesses are possible, especially for annealed multilayers. CPP-magnetoresistance (MR) measurements of the EBSV samples give only very small spin-flipping at the Al/Cu interface-δAl/Cu 0.05-0.05+0.02. Such a small value is consistent with expected small spin-orbit interactions in both Al and Cu. Supplementary studies of CPP-MR of Permalloy (Py)-based EBSVs containing [Cu/Al/Cu] trilayers, show unusual behavior when the central Al layer is at least 10 nm thick, giving a CPP-MR like that for Py/Al, independent of Cu layer thicknesses from 0 to 10 nm. MR, x-ray, and TEM results give some clues as to the origins of this behavior, but a completely satisfactory explanation is not yet available.
AB - We use two different techniques to derive the two parameters describing conduction electron scattering and spin-flipping at sputtered Al/Cu interfaces in the current-perpendicular-to-plane (CPP) geometry. These parameters are: 2ARAl/Cu, twice the interface specific resistance, where A is the area through which the CPP current flows; and δAl/Cu, which gives the probability P of spin-flipping from P = 1 - exp(δ-). A technique involving simple multilayers, and sample temperature not exceeding room temperature, gives 2ARAl/Cu = 2.3 ± 0.2 fΩm2. A technique involving exchange-biased spin-valves (EBSVs), where the sample is annealed briefly to 453 K, gives 2ARAl/Cu = 2.0 ± 0.15 fΩm2. Averaging the two values, but increasing the uncertainty for reasons explained, gives the best estimate of 2ARAl/Cu 2.15 ± 0.4 fΩm2. This average is comparable to, but smaller than, the published value of 2ARAl/Cu 3.6 ± 1 fΩm 2 derived from thermal conductance measurements, and larger than our calculated values for interface thicknesses up to 6 monolayers (ML). However, it is similar to our calculated values for an interface thickness of 8 ML. Combining extrapolation of higher temperature bulk diffusion data for Al in Cu and vice-versa, with x-ray and transmission electron microscope (TEM) studies of similarly sputtered multilayers, indicates that such interface thicknesses are possible, especially for annealed multilayers. CPP-magnetoresistance (MR) measurements of the EBSV samples give only very small spin-flipping at the Al/Cu interface-δAl/Cu 0.05-0.05+0.02. Such a small value is consistent with expected small spin-orbit interactions in both Al and Cu. Supplementary studies of CPP-MR of Permalloy (Py)-based EBSVs containing [Cu/Al/Cu] trilayers, show unusual behavior when the central Al layer is at least 10 nm thick, giving a CPP-MR like that for Py/Al, independent of Cu layer thicknesses from 0 to 10 nm. MR, x-ray, and TEM results give some clues as to the origins of this behavior, but a completely satisfactory explanation is not yet available.
UR - http://www.scopus.com/inward/record.url?scp=79953006174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953006174&partnerID=8YFLogxK
U2 - 10.1063/1.3549688
DO - 10.1063/1.3549688
M3 - Article
AN - SCOPUS:79953006174
VL - 109
JO - Journal of Applied Physics
JF - Journal of Applied Physics
SN - 0021-8979
IS - 5
M1 - 053903
ER -