TY - GEN
T1 - Computer-aided classification of breast masses using contrast-enhanced digital mammograms
AU - Danala, Gopichandh
AU - Aghaei, Faranak
AU - Heidari, Morteza
AU - Wu, Teresa
AU - Patel, Bhavika
AU - Zheng, Bin
N1 - Funding Information:
This work is supported in part by Grant R01-CA197150 from the National Cancer Institute, National Institutes of Health, USA.
Publisher Copyright:
© 2018 SPIE.
PY - 2018
Y1 - 2018
N2 - By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585±0.0526 and 0.7534±0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477±0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.
AB - By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585±0.0526 and 0.7534±0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477±0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.
KW - Contrast-enhanced digital mammography (CEDM)
KW - Dual-energy subtracted (DES) image
KW - Low energy (LE) image
KW - Mammography
KW - breast mass classification
KW - computer-aided diagnosis (CAD)
KW - correlationbased feature subset evaluator
KW - multilayer perceptron
UR - http://www.scopus.com/inward/record.url?scp=85046272409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046272409&partnerID=8YFLogxK
U2 - 10.1117/12.2293136
DO - 10.1117/12.2293136
M3 - Conference contribution
AN - SCOPUS:85046272409
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2018
A2 - Mori, Kensaku
A2 - Petrick, Nicholas
PB - SPIE
T2 - Medical Imaging 2018: Computer-Aided Diagnosis
Y2 - 12 February 2018 through 15 February 2018
ER -