Compensation of packet loss for a network-based rehabilitation system

Joonbum Bae, Wenlong Zhang, Masayoshi Tomizuka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

In this paper, a network-based rehabilitation system is proposed to increase mobility of a rehabilitation system and to enable tele-rehabilitation. Control algorithms and rehabilitation strategies distributed at the central location (physical therapist) and the local site (patient) communicate over wireless network to realize a network-based rehabilitation system. To deal with possible packet losses over wireless network, a modified linear quadratic Gaussian (LQG) controller and a disturbance observer (DOB) are applied. The performance of the proposed system and control algorithms is verified by simulation and experiment with an actual knee rehabilitation system. The simulation and experiment results show that the network-based rehabilitation system with the proposed control schemes can generate the desired assistive torque accurately in presence of packet losses.

Original languageEnglish (US)
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2413-2418
Number of pages6
ISBN (Print)9781467314039
DOIs
StatePublished - Jan 1 2012
Externally publishedYes
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: May 14 2012May 18 2012

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
CountryUnited States
CitySaint Paul, MN
Period5/14/125/18/12

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Compensation of packet loss for a network-based rehabilitation system'. Together they form a unique fingerprint.

Cite this