Comparative study of InGaAs integration on bulk Ge and virtual Ge/Si(1 0 0) substrates for low-cost photovoltaic applications

Richard Beeler, Jay Mathews, Change Weng, John Tolle, Radek Roucka, Andrew Chizmeshya, Reid Juday, Sampriti Bagchi, Jose Menendez, John Kouvetakis

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Ge virtual substrates have been developed via low-temperature CVD based on new hydride molecular chemistry routes fully compatible with conventional CMOS. These are designed to enable integration of IIIV compounds directly on Si and therefore have the potential to replace expensive Ge wafers in multijunction photovoltaics grown on the conventional 46″ format. Here we first describe in detail the protocols needed to produce defect-free and atomically flat Ge buffers with ∼0.253 μm thicknesses directly on vicinal (5°, 8°) and on-axis Si (1 0 0) substrates with up to 4″ diameters. Industrial MOCVD is then used to grow Ge-matched InGaAs films with thicknesses of 0.82.5 μm, both on our virtual substrates and on vicinal (6°) Ge wafers. A thorough characterization of the films' morphological, structural, and optical properties allows a meaningful comparison of our best "virtual-substrate- grown" films with a mature and commercially available InGaAs technology on bulk Ge. Our studies confirm that the InGaAs films grown on Ge wafers exhibit the highest quality, followed closely by those grown on miscut Ge buffered Si. The latter films, in contrast to their on-axis counterparts, are devoid of antiphase-boundary defects and exhibit smoother surfaces and superior crystallinity, indicating the need for misoriented substrates to successfully integrate InGaAs on large area Si platforms. Collectively our work demonstrates the promise for transitioning our virtual substrate technology to the industrial scale production of photovoltaic IIIIV films on Si(1 0 0) platforms.

Original languageEnglish (US)
Pages (from-to)2362-2370
Number of pages9
JournalSolar Energy Materials and Solar Cells
Volume94
Issue number12
DOIs
StatePublished - Dec 2010

Keywords

  • Ge virtual substrates
  • InGaAs
  • Photovoltaics
  • Silicon

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Comparative study of InGaAs integration on bulk Ge and virtual Ge/Si(1 0 0) substrates for low-cost photovoltaic applications'. Together they form a unique fingerprint.

Cite this