Comparative study of 28 and 18 years field aged siemens-arco M55 modules in temperate and hot-dry climates

Matthew Chicca, John Wohlgemuth, Govindasamy Tamizhmani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The primary objective of this research work is twofold: (i) determine the degradation rates of Siemens-Arco M55 modules exposed over 18 and 28 years in a hot-dry climate of Arizona and a temperate climate of California, and; (ii) identify the potential modes responsible for these degradation losses. The degradation rates were determined based on the I-V data obtained on exposed modules and on the corresponding control modules which were not exposed in the fields. The degradation modes responsible for these degradations were determined using several nondestructive tests and destructive tests performed on these control and exposed modules. The nondestructive tests included: current-voltage, visual inspection, cell-module quantum efficiency, and module level reflectance spectroscopy. The destructive tests included: transmittance spectroscopy of glass superstrates, and FTIR, DSC and TGA of encapsulant materials.

Original languageEnglish (US)
Title of host publication2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1522-1525
Number of pages4
ISBN (Electronic)9781509056057
DOIs
StatePublished - 2017
Event44th IEEE Photovoltaic Specialist Conference, PVSC 2017 - Washington, United States
Duration: Jun 25 2017Jun 30 2017

Publication series

Name2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Other

Other44th IEEE Photovoltaic Specialist Conference, PVSC 2017
Country/TerritoryUnited States
CityWashington
Period6/25/176/30/17

Keywords

  • Browning
  • Degradation
  • Destructive
  • Non-destructive
  • QE
  • Reflectance
  • Reliability
  • Series resistance

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Comparative study of 28 and 18 years field aged siemens-arco M55 modules in temperate and hot-dry climates'. Together they form a unique fingerprint.

Cite this