### Abstract

Recently Cheng, Olinto, Schramm, and Truran reexamined the constraints on the strength of primordial [Formula presented] fields from big bang nucleosynthesis (BBN). Their bottom line agreed with that of an earlier recent paper on the subject by Kernan, Starkman, and Vachaspati, both in its final limit on the [Formula presented] field during BBN and in its conclusion that, for allowed values of the [Formula presented] field, the dominant factor for BBN is the increased expansion rate at a given temperature caused by the energy density of the magnetic field, [Formula presented]. However, their conclusion that weak interaction rates increased with an increasing [Formula presented] field at these low field values contradicted the earlier results of Kernan, Starkman, and Vachaspati. In this Comment we point out that the Taylor series expansion of the weak interaction rate about [Formula presented] used by Cheng et al. is not well defined, while the Euler-McLaurin expansion of Kernan, Starkman, and Vachaspati is well behaved and reliable. Using the Euler-McLaurin expansion we find that the weak interaction rates decrease rather than increase with an increasing [Formula presented] field at small values of the [Formula presented] field.

Original language | English (US) |
---|---|

Pages (from-to) | 3766-3767 |

Number of pages | 2 |

Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |

Volume | 56 |

Issue number | 6 |

DOIs | |

State | Published - Jan 1 1997 |

Externally published | Yes |

### ASJC Scopus subject areas

- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)

## Fingerprint Dive into the research topics of 'Comment on “Constraints on the strength of primordial magnetic fields from big bang nucleosynthesis reexamined'. Together they form a unique fingerprint.

## Cite this

*Physical Review D - Particles, Fields, Gravitation and Cosmology*,

*56*(6), 3766-3767. https://doi.org/10.1103/PhysRevD.56.3766