Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region

1. Surface energy budget changes

Matei Georgescu, G. Miguez-Macho, L. T. Steyaert, C. P. Weaver

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12°C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1°C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1°C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1°C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment.

Original languageEnglish (US)
Article numberD05110
JournalJournal of Geophysical Research: Atmospheres
Volume114
Issue number5
DOIs
StatePublished - Mar 16 2009
Externally publishedYes

Fingerprint

Phoenix (AZ)
energy budgets
landscape change
surface energy
energy budget
Interfacial energy
agriculture
Agriculture
land use
Land use
surface temperature
shrubland
Temperature
Landsat
urbanization
land cover
temperature
budgets
heating
atmospheric modeling

ASJC Scopus subject areas

  • Atmospheric Science
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region : 1. Surface energy budget changes. / Georgescu, Matei; Miguez-Macho, G.; Steyaert, L. T.; Weaver, C. P.

In: Journal of Geophysical Research: Atmospheres, Vol. 114, No. 5, D05110, 16.03.2009.

Research output: Contribution to journalArticle

@article{ab7abd9868b04ae6abc8aba2b8513acc,
title = "Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes",
abstract = "This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12°C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1°C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1°C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1°C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment.",
author = "Matei Georgescu and G. Miguez-Macho and Steyaert, {L. T.} and Weaver, {C. P.}",
year = "2009",
month = "3",
day = "16",
doi = "10.1029/2008JD010745",
language = "English (US)",
volume = "114",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
publisher = "Wiley-Blackwell",
number = "5",

}

TY - JOUR

T1 - Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region

T2 - 1. Surface energy budget changes

AU - Georgescu, Matei

AU - Miguez-Macho, G.

AU - Steyaert, L. T.

AU - Weaver, C. P.

PY - 2009/3/16

Y1 - 2009/3/16

N2 - This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12°C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1°C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1°C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1°C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment.

AB - This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12°C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1°C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1°C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1°C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment.

UR - http://www.scopus.com/inward/record.url?scp=65849502631&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65849502631&partnerID=8YFLogxK

U2 - 10.1029/2008JD010745

DO - 10.1029/2008JD010745

M3 - Article

VL - 114

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 5

M1 - D05110

ER -