Circuit/device modeling at the quantum level

Zhiping Yu, Robert W. Dutton, Richard A. Kiehl

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Quantum mechanical (QM) effects, which manifest when the device dimensions are comparable to the de Brogile wavelength, are becoming common physical phenomena in the current micro/nano-meter technology era. While most novel devices take advantage of QM effects to achieve fast switching speed, miniature size, and extremely small power consumption, the mainstream CMOS devices (with the exception of EEPROMs) are generally suffering in performance from these effects. Solutions to minimize the adverse effects caused by QM while keeping the down scaling trend (technology feasibility aside) are being sought in the research community and industry-wide. This paper presents a perspective view of modeling approaches to quantum mechanical effects in solid-state devices at the device and circuit simulation levels. Specifically, the macroscopic modeling of silicon devices to include QM corrections in the classical transport framework is discussed. Both device and circuit models will be provided. On the quantum devices, such as the single electron junctions and transistors, the emphasis is placed on the principle of logic circuit operation.

Original languageEnglish (US)
Pages (from-to)1819-1825
Number of pages7
JournalIEEE Transactions on Electron Devices
Volume47
Issue number10
DOIs
StatePublished - Oct 2000
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Circuit/device modeling at the quantum level'. Together they form a unique fingerprint.

Cite this