Chromophore-free tissue sealing and repair using mid infrared lasers

Inam Ridha, Ali Basiri, Sudhakar Gudesala, Deepanjan Ghosh, Jung Keun Lee, Jacquelyn Kilbourne, Yu Yao, Kaushal Rege

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Statement of Purpose: Sutures, staple, and conventional glues are commonly used to approximate tissue edges in surgery and wound healing. However, poor strength, infection, dehiscence, leakage, and / or acute inflammation are common complications associated with these methods. Laser-activated tissue sealing, in which, laser light energy is used to facilitate biomaterial incorporation with the tissue, provides an alternative approach for wound closure. Traditionally, light-absorbing chromophores and nanoparticles have been employed for converting near infrared (NIR) laser light to heat, resulting in the photothermal fusion of the sealant biomaterial with soft tissues. We now demonstrate a novel approach for sealing tissues without the need for chromophores using mid infrared (midIR) laser light. We characterized the absorption of midIR light by several different biomaterials and investigated the rise in local temperature at different laser powers. Optimal operating conditions were employed for midIR based photothermal sealing of incised / ruptured tissue ex vivo and using different skin surgical models in live mice. Recovery of mechanical properties including tensile strength and burst and leak pressures, in concert with histopathology analyses, were employed to determine the efficacy of the seal. The effect of midIR light on cell and tissue viability was also determined. Our results demonstrate that midIR lasers can be used for rapid sealing of soft tissues using conventional biomaterials without the need for chromophores or nanoparticles, which is a significant advantage for rapidly translating this technology in the clinic.

Original languageEnglish (US)
Title of host publicationSociety for Biomaterials Annual Meeting and Exposition 2019
Subtitle of host publicationThe Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting
PublisherSociety for Biomaterials
Number of pages1
ISBN (Electronic)9781510883901
StatePublished - Jan 1 2019
Event42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Seattle, United States
Duration: Apr 3 2019Apr 6 2019

Publication series

NameTransactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium
Volume40
ISSN (Print)1526-7547

Conference

Conference42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence
CountryUnited States
CitySeattle
Period4/3/194/6/19

Fingerprint

Infrared lasers
Chromophores
Lasers
Repair
Tissue
Biocompatible Materials
Light
Biomaterials
Nanoparticles
Infrared radiation
Anatomic Models
Tissue Survival
Tensile Strength
Glues
Sealants
Adhesives
Wound Healing
Sutures
Cell Survival
Surgery

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Biotechnology
  • Biomaterials
  • Materials Chemistry

Cite this

Ridha, I., Basiri, A., Gudesala, S., Ghosh, D., Lee, J. K., Kilbourne, J., ... Rege, K. (2019). Chromophore-free tissue sealing and repair using mid infrared lasers. In Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium; Vol. 40). Society for Biomaterials.

Chromophore-free tissue sealing and repair using mid infrared lasers. / Ridha, Inam; Basiri, Ali; Gudesala, Sudhakar; Ghosh, Deepanjan; Lee, Jung Keun; Kilbourne, Jacquelyn; Yao, Yu; Rege, Kaushal.

Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials, 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium; Vol. 40).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ridha, I, Basiri, A, Gudesala, S, Ghosh, D, Lee, JK, Kilbourne, J, Yao, Y & Rege, K 2019, Chromophore-free tissue sealing and repair using mid infrared lasers. in Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium, vol. 40, Society for Biomaterials, 42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence, Seattle, United States, 4/3/19.
Ridha I, Basiri A, Gudesala S, Ghosh D, Lee JK, Kilbourne J et al. Chromophore-free tissue sealing and repair using mid infrared lasers. In Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials. 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium).
Ridha, Inam ; Basiri, Ali ; Gudesala, Sudhakar ; Ghosh, Deepanjan ; Lee, Jung Keun ; Kilbourne, Jacquelyn ; Yao, Yu ; Rege, Kaushal. / Chromophore-free tissue sealing and repair using mid infrared lasers. Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials, 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium).
@inproceedings{a0ffd8be58bf4edc93f36c374f8a2788,
title = "Chromophore-free tissue sealing and repair using mid infrared lasers",
abstract = "Statement of Purpose: Sutures, staple, and conventional glues are commonly used to approximate tissue edges in surgery and wound healing. However, poor strength, infection, dehiscence, leakage, and / or acute inflammation are common complications associated with these methods. Laser-activated tissue sealing, in which, laser light energy is used to facilitate biomaterial incorporation with the tissue, provides an alternative approach for wound closure. Traditionally, light-absorbing chromophores and nanoparticles have been employed for converting near infrared (NIR) laser light to heat, resulting in the photothermal fusion of the sealant biomaterial with soft tissues. We now demonstrate a novel approach for sealing tissues without the need for chromophores using mid infrared (midIR) laser light. We characterized the absorption of midIR light by several different biomaterials and investigated the rise in local temperature at different laser powers. Optimal operating conditions were employed for midIR based photothermal sealing of incised / ruptured tissue ex vivo and using different skin surgical models in live mice. Recovery of mechanical properties including tensile strength and burst and leak pressures, in concert with histopathology analyses, were employed to determine the efficacy of the seal. The effect of midIR light on cell and tissue viability was also determined. Our results demonstrate that midIR lasers can be used for rapid sealing of soft tissues using conventional biomaterials without the need for chromophores or nanoparticles, which is a significant advantage for rapidly translating this technology in the clinic.",
author = "Inam Ridha and Ali Basiri and Sudhakar Gudesala and Deepanjan Ghosh and Lee, {Jung Keun} and Jacquelyn Kilbourne and Yu Yao and Kaushal Rege",
year = "2019",
month = "1",
day = "1",
language = "English (US)",
series = "Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium",
publisher = "Society for Biomaterials",
booktitle = "Society for Biomaterials Annual Meeting and Exposition 2019",

}

TY - GEN

T1 - Chromophore-free tissue sealing and repair using mid infrared lasers

AU - Ridha, Inam

AU - Basiri, Ali

AU - Gudesala, Sudhakar

AU - Ghosh, Deepanjan

AU - Lee, Jung Keun

AU - Kilbourne, Jacquelyn

AU - Yao, Yu

AU - Rege, Kaushal

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Statement of Purpose: Sutures, staple, and conventional glues are commonly used to approximate tissue edges in surgery and wound healing. However, poor strength, infection, dehiscence, leakage, and / or acute inflammation are common complications associated with these methods. Laser-activated tissue sealing, in which, laser light energy is used to facilitate biomaterial incorporation with the tissue, provides an alternative approach for wound closure. Traditionally, light-absorbing chromophores and nanoparticles have been employed for converting near infrared (NIR) laser light to heat, resulting in the photothermal fusion of the sealant biomaterial with soft tissues. We now demonstrate a novel approach for sealing tissues without the need for chromophores using mid infrared (midIR) laser light. We characterized the absorption of midIR light by several different biomaterials and investigated the rise in local temperature at different laser powers. Optimal operating conditions were employed for midIR based photothermal sealing of incised / ruptured tissue ex vivo and using different skin surgical models in live mice. Recovery of mechanical properties including tensile strength and burst and leak pressures, in concert with histopathology analyses, were employed to determine the efficacy of the seal. The effect of midIR light on cell and tissue viability was also determined. Our results demonstrate that midIR lasers can be used for rapid sealing of soft tissues using conventional biomaterials without the need for chromophores or nanoparticles, which is a significant advantage for rapidly translating this technology in the clinic.

AB - Statement of Purpose: Sutures, staple, and conventional glues are commonly used to approximate tissue edges in surgery and wound healing. However, poor strength, infection, dehiscence, leakage, and / or acute inflammation are common complications associated with these methods. Laser-activated tissue sealing, in which, laser light energy is used to facilitate biomaterial incorporation with the tissue, provides an alternative approach for wound closure. Traditionally, light-absorbing chromophores and nanoparticles have been employed for converting near infrared (NIR) laser light to heat, resulting in the photothermal fusion of the sealant biomaterial with soft tissues. We now demonstrate a novel approach for sealing tissues without the need for chromophores using mid infrared (midIR) laser light. We characterized the absorption of midIR light by several different biomaterials and investigated the rise in local temperature at different laser powers. Optimal operating conditions were employed for midIR based photothermal sealing of incised / ruptured tissue ex vivo and using different skin surgical models in live mice. Recovery of mechanical properties including tensile strength and burst and leak pressures, in concert with histopathology analyses, were employed to determine the efficacy of the seal. The effect of midIR light on cell and tissue viability was also determined. Our results demonstrate that midIR lasers can be used for rapid sealing of soft tissues using conventional biomaterials without the need for chromophores or nanoparticles, which is a significant advantage for rapidly translating this technology in the clinic.

UR - http://www.scopus.com/inward/record.url?scp=85065433434&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065433434&partnerID=8YFLogxK

M3 - Conference contribution

T3 - Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium

BT - Society for Biomaterials Annual Meeting and Exposition 2019

PB - Society for Biomaterials

ER -