Chemistry of pyrrolo[1,2-a]indole- and pyrido[1,2-a]indole-based quinone methides. Mechanistic explanations for differences in cytostatic/cytotoxic properties

Omar Khdour, Edward B. Skibo

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

(Chemical Equation Presented) In the present study we investigate pyrido[1,2-a]indole- and pyrrolo[1,2-a]indole-based quinones capable of forming quinone methide and vinyl quinone species upon reduction and leaving group elimination. Our goals were to determine the influence of the 6-membered pyrido and the 5-membered pyrrolo fused rings on quinone methide and vinyl quinone formation and fate as well as on cytostatic and cytotoxic activity. We used the technique of Spectral Global Fitting to study the fleeting quinone methide intermediate directly. Conclusions regarding quinone methide reactivity are that carbonyl O-protonation is required for nucleophile trapping and that the pKa value of this protonated species is near neutrality. The abnormally high protonated carbonyl pKa values are due to the formation of an aromatic carbocation species upon protonation. The fused pyrido ring promotes quinone methide and vinyl quinone formation but slows nucleophile trapping compared to the fused pyrrolo ring. These findings are explained by the presence of axial hydrogen atoms in the fused pyrido ring resulting in more steric congestion compared to the relatively flat fused pyrrolo ring. Consequently, pyrrolo[1,2-a]indole-based quinones exhibit more cytostatic activity than the pyrido[1,2-a]indole analogues due to their greater nucleophile trapping capability.

Original languageEnglish (US)
Pages (from-to)8636-8647
Number of pages12
JournalJournal of Organic Chemistry
Volume72
Issue number23
DOIs
StatePublished - Nov 9 2007

ASJC Scopus subject areas

  • Organic Chemistry

Fingerprint Dive into the research topics of 'Chemistry of pyrrolo[1,2-a]indole- and pyrido[1,2-a]indole-based quinone methides. Mechanistic explanations for differences in cytostatic/cytotoxic properties'. Together they form a unique fingerprint.

Cite this