Charge separation/recombination reactions in non-polar fluids: A molecular description

Dmitry V. Matyushov, Roland Schmid

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The activation energy for intramolecular electron transfer in non-polar fluids is derived in analytical form by expressing it through the chemical potential of solvation of a dipole of complex dipole moment fi. The reorganization energy of the non-polar liquid manifests itself as a nonlinear liquid response beginning with terms oc p.4 upwards in the expansion of the chemical potential over the solute dipole moment. The reorganization energy is represented as the sum of two terms arising from liquid polarization and density reorganization, with the latter component being of much greater importance. It is suggested that electron transfer in non-polar solvents is promoted by fluctuations of the number of molecules in the first coordination sphere of the donor-acceptor complex. Since the molecular polarizability is temperature independent, the reorganization energy is inversely proportional to temperature. This fact can lead to a maximum in the temperature dependence of electron transfer rates, and hence to negative activation enthalpies. Comparisons of theoretical predictions are made with experimental thermochromic shifts of charge recombination optical bands.

Original languageEnglish (US)
Pages (from-to)533-552
Number of pages20
JournalMolecular Physics
Volume84
Issue number3
DOIs
StatePublished - Feb 10 1995
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Molecular Biology
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Charge separation/recombination reactions in non-polar fluids: A molecular description'. Together they form a unique fingerprint.

Cite this