Characterizing the Transmission Dynamics and Control of Ebola Virus Disease

Gerardo Chowell, Hiroshi Nishiura

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Carefully calibrated transmission models have the potential to guide public health officials on the nature and scale of the interventions required to control epidemics. In the context of the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this issue of PLOS Biology, employed an elegant modeling approach to capture the distributions of the number of secondary cases that arise in the community and health care settings in the context of changing population behaviors and increasing hospital capacity. Their findings underscore the role of increasing the rate of safe burials and the fractions of infectious individuals who seek hospitalization together with hospital capacity to achieve epidemic control. However, further modeling efforts of EVD transmission and control in West Africa should utilize the spatial-temporal patterns of spread in the region by incorporating spatial heterogeneity in the transmission process. Detailed datasets are urgently needed to characterize temporal changes in population behaviors, contact networks at different spatial scales, population mobility patterns, adherence to infection control measures in hospital settings, and hospitalization and reporting rates.

Original languageEnglish (US)
JournalPLoS biology
Volume13
Issue number1
DOIs
StatePublished - 2015

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Characterizing the Transmission Dynamics and Control of Ebola Virus Disease'. Together they form a unique fingerprint.

Cite this