TY - JOUR
T1 - Characterizing a Sewage Plume Using the 3H-3He Dating Technique
AU - Shapiro, Stephanie Dunkle
AU - LeBlanc, Denis
AU - Schlosser, Peter
AU - Ludin, Andrea
PY - 1999
Y1 - 1999
N2 - An extensive 3H-3He study was performed to determine detailed characteristics of a regional flow system and a sewage plume over a distance of 4 km in a sand and gravel aquifer at Otis Air Base in Falmouth, Massachusetts. 3H-3He ages increase with depth in individual piezometer clusters and with distance along flowpaths. However, the age gradient with depth (Δt/Δz) is smaller in the plume than that in the regional waters, due to the intense recharge in the infiltration beds. The 1960s bomb peak of tritium in precipitation is archived longitudinally along a flowline through the main axis of the plume and vertically in individual piezometer clusters. On the eastern side of the sampling area, where water from Ashumet Pond forces plume water deeper into the flow system, 3H-3He ages are young at depth because the 3H-3He "clock" is reset due to outgassing of helium in the pond. A reconstruction of the tritium input functions for the regional and plume samples shows that there is no offset in the peak [3H]+[3Hetrit] concentrations for the plume and regional water, indicating that the water from supply wells for use on the base is young. The 3H-3He ages and detergent concentrations in individual wells are consistent with the beginning of use of detergents and the time period when their concentrations in sewage would have been greatest. Ages and hydraulic properties calculated using the 3H-3He data compare well with those from previous investigations and from particle-tracking simulations.
AB - An extensive 3H-3He study was performed to determine detailed characteristics of a regional flow system and a sewage plume over a distance of 4 km in a sand and gravel aquifer at Otis Air Base in Falmouth, Massachusetts. 3H-3He ages increase with depth in individual piezometer clusters and with distance along flowpaths. However, the age gradient with depth (Δt/Δz) is smaller in the plume than that in the regional waters, due to the intense recharge in the infiltration beds. The 1960s bomb peak of tritium in precipitation is archived longitudinally along a flowline through the main axis of the plume and vertically in individual piezometer clusters. On the eastern side of the sampling area, where water from Ashumet Pond forces plume water deeper into the flow system, 3H-3He ages are young at depth because the 3H-3He "clock" is reset due to outgassing of helium in the pond. A reconstruction of the tritium input functions for the regional and plume samples shows that there is no offset in the peak [3H]+[3Hetrit] concentrations for the plume and regional water, indicating that the water from supply wells for use on the base is young. The 3H-3He ages and detergent concentrations in individual wells are consistent with the beginning of use of detergents and the time period when their concentrations in sewage would have been greatest. Ages and hydraulic properties calculated using the 3H-3He data compare well with those from previous investigations and from particle-tracking simulations.
UR - http://www.scopus.com/inward/record.url?scp=0033330175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033330175&partnerID=8YFLogxK
U2 - 10.1111/j.1745-6584.1999.tb01185.x
DO - 10.1111/j.1745-6584.1999.tb01185.x
M3 - Article
AN - SCOPUS:0033330175
VL - 37
SP - 861
EP - 878
JO - GroundWater
JF - GroundWater
SN - 0017-467X
IS - 6
ER -