TY - JOUR
T1 - Changing the Future?
T2 - Development and Application of Pedestrian Safety Performance Functions to Prioritize Locations in Seattle, Washington
AU - Thomas, Libby
AU - Lan, Bo
AU - Sanders, Rebecca L.
AU - Frackelton, Alexandra
AU - Gardner, Spencer
AU - Hintze, Michael
N1 - Funding Information:
This work was funded by the Seattle Department of Transportation. The authors thank Monica Dewald, Craig Moore, Chris Svolopoulos, Mike Morris-Lent, and others at the Seattle DOT for providing data and supporting this project.
Publisher Copyright:
© 2017 National Academy of Sciences.
PY - 2017
Y1 - 2017
N2 - This study aimed to use robust analysis methods to identify and screen locations at risk for pedestrian crashes and injuries to help Seattle, Washington, a Vision Zero city, broaden treatment priorities beyond only high-crash locations. For this objective, data from the entire network were used to develop safety performance functions (SPFs) for two pedestrian crash types: total pedestrian crashes at intersections (a high frequency type) and a subset of intersection crashes involving through motorists striking crossing pedestrians (a high severity type). Many variables from roadway, built environment, census, and activity measures were tested. A similar but not identical set of variables, including measures of activity and intersection size and complexity, significantly contributed to crash prediction in both models. Pedestrian volume exhibited a curved relationship to crashes and demonstrated a tendency for expected crashes to begin to decline above a threshold value; however, the causes of this relationship were unknown. The SPFs were used in several ranking methods, including SPF-predicted crashes, empirical Bayes estimated crashes, and potential for safety improvement, to aid in prioritization of locations that might have been candidates for safety improvement but that had not necessarily experienced a high frequency of crashes. On the basis of this example, this approach is feasible for jurisdictions that wish to be more proactive in addressing potential crashes and injuries. Jurisdictions must, however, begin routinely collecting the data needed to implement the method efficiently.
AB - This study aimed to use robust analysis methods to identify and screen locations at risk for pedestrian crashes and injuries to help Seattle, Washington, a Vision Zero city, broaden treatment priorities beyond only high-crash locations. For this objective, data from the entire network were used to develop safety performance functions (SPFs) for two pedestrian crash types: total pedestrian crashes at intersections (a high frequency type) and a subset of intersection crashes involving through motorists striking crossing pedestrians (a high severity type). Many variables from roadway, built environment, census, and activity measures were tested. A similar but not identical set of variables, including measures of activity and intersection size and complexity, significantly contributed to crash prediction in both models. Pedestrian volume exhibited a curved relationship to crashes and demonstrated a tendency for expected crashes to begin to decline above a threshold value; however, the causes of this relationship were unknown. The SPFs were used in several ranking methods, including SPF-predicted crashes, empirical Bayes estimated crashes, and potential for safety improvement, to aid in prioritization of locations that might have been candidates for safety improvement but that had not necessarily experienced a high frequency of crashes. On the basis of this example, this approach is feasible for jurisdictions that wish to be more proactive in addressing potential crashes and injuries. Jurisdictions must, however, begin routinely collecting the data needed to implement the method efficiently.
UR - http://www.scopus.com/inward/record.url?scp=85054310456&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054310456&partnerID=8YFLogxK
U2 - 10.3141/2659-23
DO - 10.3141/2659-23
M3 - Article
AN - SCOPUS:85054310456
SN - 0361-1981
VL - 2659
SP - 212
EP - 223
JO - Transportation Research Record
JF - Transportation Research Record
IS - 1
ER -