Cellular and topology optimization of beams under bending: An experimental study

Arjun Gopal, Gaurav Parihar, McKay Holt, Tanner Stinson, Manasvi Sharma, Dhruv Bhate

Research output: Contribution to conferencePaperpeer-review

Abstract

Design for Additive Manufacturing (AM) includes concepts such as cellular materials and topology optimization that combine the capabilities of advanced computational design with those of AM technologies that can realize them. There is however, limited experimental study of the relative benefits of these different approaches to design. This paper examines these two different approaches, specifically in the context of maximizing the flexural rigidity of a beam under bending, while minimizing its mass. A total of 23 beams were designed using commercially available cellular design, and topology optimization software. The Selective Laser Sintering (SLS) process was used to manufacture these beams with Nylon 12, which were then tested per ASTM D790 three-point bend test standards. The effect of varying the size and shape of cells on the flexural rigidity was studied using 15 different cellular designs. These results were then compared to six different topology optimized beam designs, as well as three solid and hollow baseline beams. These preliminary findings suggest that topology optimized shapes underperform their cellular counterparts with regard to specific stiffness, and that stochastic cellular shapes deserve deeper study.

Original languageEnglish (US)
Pages1877-1892
Number of pages16
StatePublished - 2019
Event30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 - Austin, United States
Duration: Aug 12 2019Aug 14 2019

Conference

Conference30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019
Country/TerritoryUnited States
CityAustin
Period8/12/198/14/19

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'Cellular and topology optimization of beams under bending: An experimental study'. Together they form a unique fingerprint.

Cite this