Cell-type-specific activation of the oligoadenylate synthetase-rnase l pathway by a murine coronavirus

Ling Zhao, Dillon Birdwell, Ashley Wu, Ruth Elliott, Kristine M. Rose, Judith M. Phillips, Yize Li, Judith Grinspan, Robert H. Silverman, Susan R. Weiss

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2′,5′-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types-neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I-C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.

Original languageEnglish (US)
Pages (from-to)8408-8418
Number of pages11
JournalJournal of virology
Volume87
Issue number15
DOIs
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Cell-type-specific activation of the oligoadenylate synthetase-rnase l pathway by a murine coronavirus'. Together they form a unique fingerprint.

Cite this