Cationic cure of epoxy resins via benzylsulfonium salts covalently bound to glass surfaces

Lon J. Mathias, John McGowen

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The cure behavior of epoxy resins in the presence of glass fillers was investigated using differential scanning calorimetry (DSC). A novel benzylsulfonium salt capable of covalently bonding to glass surfaces through a trialkoxysilane moiety were synthesized. Coupling of the salt to silica gel (as a model glass surface), characterization of the bound material, and its ability to initiate the cationic cure of DGEBA resins were investigated. The bound material was characterized by solid-state 13C and 29Si CP/MAS NMR, FTIR, and TGA. The sulfonium salt was coupled with silica as the Br anion form because of the insolubility of the SbF6 salt. After anion exchange, silica-bound salt with SbF6 counterion was shown to initiate cure of epoxy resins but only at temperatures much higher than with an analogous unbound salt (>200°C and < 100°C, respectively). The inability to get complete anion exchange of Br anions for SbF6 (necessary for cationic initiation activity) after coupling allowed formation of excess tetrahydrothiophene (THT) during heating, through decomposition of the residual Br salt, causing temporary termination and a large delay in cure. The temporary termination mechanism involved reaction of THT and the active oxonium ion to give a primary alkylsulfonium salt. In addition, it was discovered that the silica gel itself had an inhibiting effect on the cure of epoxy resins cured with unbound initiator, giving low Tg materials. This was due to inherent surface interaction with the salt and not to chemical reaction with the surface or with a physically adsorbed contaminant (such as water). The degree of inhibition increased with increasing filler content. Low surface area glass beads also inhibited cure, although surface modification of the glass beads with bound benzylsulfonium salt (SbF6 form) improved cure significantly, reducing onset delay and giving high Tg materials. The degree of delay was inversely dependent on the amount of silane coupled to the surface and varied with counterion.

Original languageEnglish (US)
Pages (from-to)332-347
Number of pages16
JournalPolymer Composites
Volume18
Issue number3
StatePublished - 1997
Externally publishedYes

Fingerprint

Epoxy Resins
Epoxy resins
Salts
Glass
Anions
Negative ions
Silica Gel
Silica gel
Silicon Dioxide
Fillers
Ion exchange
Silica
Silanes
Surface treatment
Chemical reactions
Differential scanning calorimetry
Resins
Solubility
Nuclear magnetic resonance
Impurities

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry
  • Polymers and Plastics

Cite this

Cationic cure of epoxy resins via benzylsulfonium salts covalently bound to glass surfaces. / Mathias, Lon J.; McGowen, John.

In: Polymer Composites, Vol. 18, No. 3, 1997, p. 332-347.

Research output: Contribution to journalArticle

@article{dba9eef21fca490197b4ce7056a6ca94,
title = "Cationic cure of epoxy resins via benzylsulfonium salts covalently bound to glass surfaces",
abstract = "The cure behavior of epoxy resins in the presence of glass fillers was investigated using differential scanning calorimetry (DSC). A novel benzylsulfonium salt capable of covalently bonding to glass surfaces through a trialkoxysilane moiety were synthesized. Coupling of the salt to silica gel (as a model glass surface), characterization of the bound material, and its ability to initiate the cationic cure of DGEBA resins were investigated. The bound material was characterized by solid-state 13C and 29Si CP/MAS NMR, FTIR, and TGA. The sulfonium salt was coupled with silica as the Br anion form because of the insolubility of the SbF6 salt. After anion exchange, silica-bound salt with SbF6 counterion was shown to initiate cure of epoxy resins but only at temperatures much higher than with an analogous unbound salt (>200°C and < 100°C, respectively). The inability to get complete anion exchange of Br anions for SbF6 (necessary for cationic initiation activity) after coupling allowed formation of excess tetrahydrothiophene (THT) during heating, through decomposition of the residual Br salt, causing temporary termination and a large delay in cure. The temporary termination mechanism involved reaction of THT and the active oxonium ion to give a primary alkylsulfonium salt. In addition, it was discovered that the silica gel itself had an inhibiting effect on the cure of epoxy resins cured with unbound initiator, giving low Tg materials. This was due to inherent surface interaction with the salt and not to chemical reaction with the surface or with a physically adsorbed contaminant (such as water). The degree of inhibition increased with increasing filler content. Low surface area glass beads also inhibited cure, although surface modification of the glass beads with bound benzylsulfonium salt (SbF6 form) improved cure significantly, reducing onset delay and giving high Tg materials. The degree of delay was inversely dependent on the amount of silane coupled to the surface and varied with counterion.",
author = "Mathias, {Lon J.} and John McGowen",
year = "1997",
language = "English (US)",
volume = "18",
pages = "332--347",
journal = "Polymer Composites",
issn = "0272-8397",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

TY - JOUR

T1 - Cationic cure of epoxy resins via benzylsulfonium salts covalently bound to glass surfaces

AU - Mathias, Lon J.

AU - McGowen, John

PY - 1997

Y1 - 1997

N2 - The cure behavior of epoxy resins in the presence of glass fillers was investigated using differential scanning calorimetry (DSC). A novel benzylsulfonium salt capable of covalently bonding to glass surfaces through a trialkoxysilane moiety were synthesized. Coupling of the salt to silica gel (as a model glass surface), characterization of the bound material, and its ability to initiate the cationic cure of DGEBA resins were investigated. The bound material was characterized by solid-state 13C and 29Si CP/MAS NMR, FTIR, and TGA. The sulfonium salt was coupled with silica as the Br anion form because of the insolubility of the SbF6 salt. After anion exchange, silica-bound salt with SbF6 counterion was shown to initiate cure of epoxy resins but only at temperatures much higher than with an analogous unbound salt (>200°C and < 100°C, respectively). The inability to get complete anion exchange of Br anions for SbF6 (necessary for cationic initiation activity) after coupling allowed formation of excess tetrahydrothiophene (THT) during heating, through decomposition of the residual Br salt, causing temporary termination and a large delay in cure. The temporary termination mechanism involved reaction of THT and the active oxonium ion to give a primary alkylsulfonium salt. In addition, it was discovered that the silica gel itself had an inhibiting effect on the cure of epoxy resins cured with unbound initiator, giving low Tg materials. This was due to inherent surface interaction with the salt and not to chemical reaction with the surface or with a physically adsorbed contaminant (such as water). The degree of inhibition increased with increasing filler content. Low surface area glass beads also inhibited cure, although surface modification of the glass beads with bound benzylsulfonium salt (SbF6 form) improved cure significantly, reducing onset delay and giving high Tg materials. The degree of delay was inversely dependent on the amount of silane coupled to the surface and varied with counterion.

AB - The cure behavior of epoxy resins in the presence of glass fillers was investigated using differential scanning calorimetry (DSC). A novel benzylsulfonium salt capable of covalently bonding to glass surfaces through a trialkoxysilane moiety were synthesized. Coupling of the salt to silica gel (as a model glass surface), characterization of the bound material, and its ability to initiate the cationic cure of DGEBA resins were investigated. The bound material was characterized by solid-state 13C and 29Si CP/MAS NMR, FTIR, and TGA. The sulfonium salt was coupled with silica as the Br anion form because of the insolubility of the SbF6 salt. After anion exchange, silica-bound salt with SbF6 counterion was shown to initiate cure of epoxy resins but only at temperatures much higher than with an analogous unbound salt (>200°C and < 100°C, respectively). The inability to get complete anion exchange of Br anions for SbF6 (necessary for cationic initiation activity) after coupling allowed formation of excess tetrahydrothiophene (THT) during heating, through decomposition of the residual Br salt, causing temporary termination and a large delay in cure. The temporary termination mechanism involved reaction of THT and the active oxonium ion to give a primary alkylsulfonium salt. In addition, it was discovered that the silica gel itself had an inhibiting effect on the cure of epoxy resins cured with unbound initiator, giving low Tg materials. This was due to inherent surface interaction with the salt and not to chemical reaction with the surface or with a physically adsorbed contaminant (such as water). The degree of inhibition increased with increasing filler content. Low surface area glass beads also inhibited cure, although surface modification of the glass beads with bound benzylsulfonium salt (SbF6 form) improved cure significantly, reducing onset delay and giving high Tg materials. The degree of delay was inversely dependent on the amount of silane coupled to the surface and varied with counterion.

UR - http://www.scopus.com/inward/record.url?scp=0031166967&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031166967&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031166967

VL - 18

SP - 332

EP - 347

JO - Polymer Composites

JF - Polymer Composites

SN - 0272-8397

IS - 3

ER -