Capacity of MIMO systems in shallow water acoustic channels

Andreja Radosevic, Dario Fertonani, Tolga M. Duman, John G. Proakis, Milica Stojanovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Underwater acoustic (UWA) channels are typically characterized by a multipath structure with large delay spread, where only a few propagation paths carry significant energy. Each path exhibits time variability, which, together with the transmitter and receiver motion, induces Doppler spreading and shifting of the signal. In this paper, we analyze the limits on the information rate achievable through multiple-input multiple-output (MIMO) communications over UWA channels. Assuming full channel state information (CSI) at the receiver, we evaluate the ergodic capacity in two scenarios: one with partial CSI at the transmitter, and another with no CSI. Also, we consider the constrained capacity for practical modulations, e.g., BPSK and QPSK, and, exploiting the sparseness of the multipath structure, we provide new lower bounds on the achievable information rate. Statistical characterization and numerical examples are given based on the data collected in a recent experiment, conducted off the coast of Kauai, Hawaii, in June 2008.

Original languageEnglish (US)
Title of host publicationConference Record of the 44th Asilomar Conference on Signals, Systems and Computers, Asilomar 2010
Pages2164-2168
Number of pages5
DOIs
StatePublished - 2010
Event44th Asilomar Conference on Signals, Systems and Computers, Asilomar 2010 - Pacific Grove, CA, United States
Duration: Nov 7 2010Nov 10 2010

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393

Other

Other44th Asilomar Conference on Signals, Systems and Computers, Asilomar 2010
Country/TerritoryUnited States
CityPacific Grove, CA
Period11/7/1011/10/10

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Capacity of MIMO systems in shallow water acoustic channels'. Together they form a unique fingerprint.

Cite this