Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and selection for chemosensitivity

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

Cells in neoplasms evolve by natural selection. Traditional cytotoxic chemotherapies add further selection pressure to the evolution of neoplastic cells, thereby selecting for cells resistant to the therapies. An alternative proposal is a benign cell booster. Rather than trying to kill the highly dysplastic or malignant cells directly, a benign cell booster increases the fitness of the more benign cells, which may be either normal or benign clones, so that they may outcompete more advanced or malignant cells in a neoplasm. In silico simulations of benign cell boosters in neoplasms with evolving clones show benign cell boosters to be effective at destroying advanced or malignant cells and preventing relapse even when applied late in progression. These results are conditional on the benign cell boosters giving a competitive advantage to the benign cells in the neoplasm. Furthermore, the benign cell boosters must be applied over a long period of time in order for the benign cells to drive the dysplastic cells to extinction or near extinction. Most importantly, benign cell boosters based on this strategy must target a characteristic of the benign cells that is causally related to the benign state to avoid relapse. Another promising strategy is to boost cells that are sensitive to a cytotoxin, thereby selecting for chemosensitive cells, and then apply the toxin. Effective therapeutic and prevention strategies will have to alter the competitive dynamics of a neoplasm to counter progression toward invasion, metastasis, and death.

Original languageEnglish (US)
Pages (from-to)1375-1384
Number of pages10
JournalCancer Epidemiology Biomarkers and Prevention
Volume13
Issue number8
StatePublished - Aug 2004
Externally publishedYes

Fingerprint

Neoplasms
Clone Cells
Recurrence
Genetic Selection
Cytotoxins
Computer Simulation
Neoplasm Metastasis
Pressure
Drug Therapy
Therapeutics

ASJC Scopus subject areas

  • Epidemiology
  • Oncology

Cite this

@article{02bf6402d5d145f0b6594385aaa360c3,
title = "Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and selection for chemosensitivity",
abstract = "Cells in neoplasms evolve by natural selection. Traditional cytotoxic chemotherapies add further selection pressure to the evolution of neoplastic cells, thereby selecting for cells resistant to the therapies. An alternative proposal is a benign cell booster. Rather than trying to kill the highly dysplastic or malignant cells directly, a benign cell booster increases the fitness of the more benign cells, which may be either normal or benign clones, so that they may outcompete more advanced or malignant cells in a neoplasm. In silico simulations of benign cell boosters in neoplasms with evolving clones show benign cell boosters to be effective at destroying advanced or malignant cells and preventing relapse even when applied late in progression. These results are conditional on the benign cell boosters giving a competitive advantage to the benign cells in the neoplasm. Furthermore, the benign cell boosters must be applied over a long period of time in order for the benign cells to drive the dysplastic cells to extinction or near extinction. Most importantly, benign cell boosters based on this strategy must target a characteristic of the benign cells that is causally related to the benign state to avoid relapse. Another promising strategy is to boost cells that are sensitive to a cytotoxin, thereby selecting for chemosensitive cells, and then apply the toxin. Effective therapeutic and prevention strategies will have to alter the competitive dynamics of a neoplasm to counter progression toward invasion, metastasis, and death.",
author = "Carlo Maley and Reid, {Brian J.} and Stephanie Forrest",
year = "2004",
month = "8",
language = "English (US)",
volume = "13",
pages = "1375--1384",
journal = "Cancer Epidemiology Biomarkers and Prevention",
issn = "1055-9965",
publisher = "American Association for Cancer Research Inc.",
number = "8",

}

TY - JOUR

T1 - Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells

T2 - Simulating benign cell boosters and selection for chemosensitivity

AU - Maley, Carlo

AU - Reid, Brian J.

AU - Forrest, Stephanie

PY - 2004/8

Y1 - 2004/8

N2 - Cells in neoplasms evolve by natural selection. Traditional cytotoxic chemotherapies add further selection pressure to the evolution of neoplastic cells, thereby selecting for cells resistant to the therapies. An alternative proposal is a benign cell booster. Rather than trying to kill the highly dysplastic or malignant cells directly, a benign cell booster increases the fitness of the more benign cells, which may be either normal or benign clones, so that they may outcompete more advanced or malignant cells in a neoplasm. In silico simulations of benign cell boosters in neoplasms with evolving clones show benign cell boosters to be effective at destroying advanced or malignant cells and preventing relapse even when applied late in progression. These results are conditional on the benign cell boosters giving a competitive advantage to the benign cells in the neoplasm. Furthermore, the benign cell boosters must be applied over a long period of time in order for the benign cells to drive the dysplastic cells to extinction or near extinction. Most importantly, benign cell boosters based on this strategy must target a characteristic of the benign cells that is causally related to the benign state to avoid relapse. Another promising strategy is to boost cells that are sensitive to a cytotoxin, thereby selecting for chemosensitive cells, and then apply the toxin. Effective therapeutic and prevention strategies will have to alter the competitive dynamics of a neoplasm to counter progression toward invasion, metastasis, and death.

AB - Cells in neoplasms evolve by natural selection. Traditional cytotoxic chemotherapies add further selection pressure to the evolution of neoplastic cells, thereby selecting for cells resistant to the therapies. An alternative proposal is a benign cell booster. Rather than trying to kill the highly dysplastic or malignant cells directly, a benign cell booster increases the fitness of the more benign cells, which may be either normal or benign clones, so that they may outcompete more advanced or malignant cells in a neoplasm. In silico simulations of benign cell boosters in neoplasms with evolving clones show benign cell boosters to be effective at destroying advanced or malignant cells and preventing relapse even when applied late in progression. These results are conditional on the benign cell boosters giving a competitive advantage to the benign cells in the neoplasm. Furthermore, the benign cell boosters must be applied over a long period of time in order for the benign cells to drive the dysplastic cells to extinction or near extinction. Most importantly, benign cell boosters based on this strategy must target a characteristic of the benign cells that is causally related to the benign state to avoid relapse. Another promising strategy is to boost cells that are sensitive to a cytotoxin, thereby selecting for chemosensitive cells, and then apply the toxin. Effective therapeutic and prevention strategies will have to alter the competitive dynamics of a neoplasm to counter progression toward invasion, metastasis, and death.

UR - http://www.scopus.com/inward/record.url?scp=4043075127&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4043075127&partnerID=8YFLogxK

M3 - Article

C2 - 15298961

AN - SCOPUS:4043075127

VL - 13

SP - 1375

EP - 1384

JO - Cancer Epidemiology Biomarkers and Prevention

JF - Cancer Epidemiology Biomarkers and Prevention

SN - 1055-9965

IS - 8

ER -