Calorimetric Study of Alkali Metal Ion (K+, Na+, Li+) Exchange in a Clay-Like MXene

Geetu Sharma, Elayaraja Muthuswamy, Michael Naguib, Yury Gogotsi, Alexandra Navrotsky, Di Wu

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti3C2Tx, where Tx stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti3C2Tx, ΔHimm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used to obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na+ and Li+ ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface. (Chemical Equation Presented).

Original languageEnglish (US)
Pages (from-to)15145-15153
Number of pages9
JournalJournal of Physical Chemistry C
Volume121
Issue number28
DOIs
StatePublished - Jul 20 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Calorimetric Study of Alkali Metal Ion (K+, Na+, Li+) Exchange in a Clay-Like MXene'. Together they form a unique fingerprint.

Cite this