Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity

Hangyong Shan, Ivan Iorsh, Bo Han, Christoph Rupprecht, Heiko Knopf, Falk Eilenberger, Martin Esmann, Kentaro Yumigeta, Kenji Watanabe, Takashi Taniguchi, Sebastian Klembt, Sven Höfling, Sefaattin Tongay, Carlos Antón-Solanas, Ivan A. Shelykh, Christian Schneider

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modes in the optical bandgap with the lower polariton mode pushed below the WSe2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation.

Original languageEnglish (US)
Article number3001
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity'. Together they form a unique fingerprint.

Cite this